Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 [ 100 ] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

V = - V

0 (8.129)

1 = --

Equatit>ri.4 (8.119), (8.121), (8.127), and (8.128) constitute the results of the analysis of the totttrol-to-output transfer function: analytical expressions for the salient feature.s 01, Q. f7, and (il. These expressions can be used to choose the element values such that given desired values of the salient features are obtained.

Having found analytical expressions for the salient features of the transfer functions, we can now plug in numerical values and conshuct the Bode plot. Suppose that we iue given the following values:

0 = 0.6 Л= lOQ

V, = 30V (S,t30)

/. = 160 цН C= 160

We can evaluate Eqs. (8.117), (8.119), (8.121), (8.127), and (8.128), to determine numerical values of the salient features of the transfer functions. The results are:

fi = g = 1.53.5 dB [C,; [ = -LJr = i87,5 V 45.5 dBV --S-2.;fc- * -

The Bode plot of the magnitude and phase of is constructed in Fig. S.33. The transfer fimction contains a dc gain of 45.5 dBV, resonant poles at Ш) Hz having a Q of 4 =j 12 dB, and a right half-plane zero at 2.65 kHz. The resonant poles contribute-i 80° to the high-frequency phase asymptote, while the right half-plane zero contributes -90° In addition, the inverting characteristic of the buck-boost converter leads to a 180° phase reversal, not included in Fig. 8.33.

The Bode plot of the magnitude and phase of the line-to-output transfer function (1 is constructed in Fig. 8.34. This transfer function contains the same resonant poles at Ш) Hz, but is missing the right half-plane zero. The dc gain G,;, is equal to the conversion ratio M{D) of the converter. Again, the 180° phase reversal, caused by the inverting characteristic of the buck-boost convetter, is not included in Fig. 8.34.



s.2 Aiialy.iis of Convener Transfer Fiuiaioiu 299


100 Вг

1 кНг

10 kHz

100 кНг

Fig. 8,33 Bode plot of tlic cotitro1-to-OLtput transfer function G ,;, buck-boost converter example, Phase rtivcrsal owing 10 ntitpuf voltage hversioti is not included.

20 (IB OdB -20 dB -40 dB -GOdB -SOdB

= 1.5

b = l=> l2dB

IICII

400 Hz\-t} dB/decade

300 Hz \

-180-

533 Hz

10 Hz

100 EIz

1 kHz

-180* -270-

10 kHz

too kHz

Fig. 8.34 Bode plot of the line-to-output transfer function C, buck-boost coiiverier example Phase reversal owing to output voltiije rwersal is not iiieluded.



ТяЫе iL2 Salieiil teatures of the small-siunal CCM ttansfer functions of some basic dc-dc converters

Converter

Buck

Boost

В иск-boost

D Df

DfR DL

8.2.2 Transfer Functions of Some Basic CCM Converters

The salient features of the line-to-output and controi-to-output transfer functions of the basic buck, boost, and buck-boost converters are summarized in Table S.2. In each case, the control-to-output transfer function is [)f the form

and the line-to-output transfer function is of the form

(S.l 32)

(8,133)

The boost and buck-boost converters exhibit control-to-output transfer functions containing two poles and a right half-plane zero. The buck converter Gj,(*) exhibits two poles but no zero. The line-to-output transfer functions of all three ideal converters contain two poles and no zeroes.

These results cim be easily adapted to transformer-isolated versions of the buck, boost and buck-boost converters. The transfonner has negligible effect on the transfer functions С (л) and ОД,), other than introduction of a turns ratio. For example, when the transformer of the bridge topology is driven symmetrically, its magnetizing inductance does not contribute dynamics to the converter small signal transfer functions. Likewise, when the transf[)rmer magnetizing inductance of the forward con verter is reset by the input voltage v, as in Fig. 6,23 or 6.2S, then it also contributes negligible dynamics In all transformer-isolated converters based on the buck, boost, and buck-boost converters, the line-to output transfer function should be multiplied by the transformer turns ratio; the transfer functions

(8.132) and (8.133) and the parameters listed in Table 8.2 can otherwise be directly applied.

8.2.3 PhjsicaJ Origins of tht Right Half-Plant; Zero in Converters

Figure 8.35 contains a block diagram that illustrates the behavior of the right half-plane zero. At low frequencies, the gain (s/ft)) has negligible magnitude, and hence = At high frequencies, where the



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 [ 100 ] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300