Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 [ 101 ] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. S.3S Block diagram having a right half-plane zero transfer fiinetion, as in Eq. (8.32), witli tuj = (0.

magnittide of the gain (х/ч>) is much greater than 1, u , = -(*/С1))Ы;,. The negative sign eanses a phase reversal at high frequency. The implication for the transient response is that the output initially tends in the opposite direction ofthe final value.

We have seen that the control-to-output transfer functions of the boost and buck-boost converters, Fig. 8.36, exhibit RFIP zeroes. Typical transient response wavefortns for a step change in duty cycle are illustrated in Fig. 8.37. For this exatnple, the converter initially operates in equilibriutn, a.t d - 0.4 and d -0.6. Equilibriutn inductor current ij(0, diode current io(/), and output voltage v(/) vt-avefonns are illustrated. The average diode current is

.o/r.

(8.134)

By capacitor charge balance, this average diwie current is equal to the dc load current when the converter operates in equilibriutn. Attime (= f the duty cycle is increased to 0.6. In consequence, tf decreases to 0.4. The average diode current, given by Eq. (8.134), therefore decreases, and the output capacitor begins to discharge. The output voltage magnitude initially decreases as illustrated.

2 о(0

-о I a-4--

с -ZZ. R < V

Fig. S.36 Two basic converters whose CCM control-to-output transfer functions exhibit RHP zeroes: (a) boost, (b) buck-boost.



Fig. 8,37 Wavcfoims of the conveners of Fig, 8,36, for il step re-spoiise In duty cycle. The average diode cuirent and output voltage initially decrease, as predicted by the RlIP zero. Eventually, the inductor current increases, causing the average diode current and the output voltage to iticrea.se.


d = OA

Tlie increased duty cycle causes the inductor current to slowly increase, and hence the average diode current eventually exceeds its original d 0.4 equilibrium value. The output voltage eventually increases in nnagnitude, to the new equilibriunn value corresponding to tf = 0.6.

The presence of a right half-plane zero tends to destabilize wide-bandwidth feedback loops, because during a transient the output initially changes in the wrong direction. The phase margin test for feedback loop stability is discussed in the next chapter; when a RHP zero is present, it is difficult to obtain an adequate phase nnargin in conventional single-loop feedback systems having wide bandwidth. Prediction of the right half-plane zero, and the consequent explanation of why the feedback loops controlling CCM boost and buck-boost converters tend to oscillate, was one of the early successes of averaged converter modeling.

(IRAPHICAL CONSTRUCTION OF IMPEDANCES AND TRANSFER FUNCTIONS

Often, we can draw approximate Bode diagrams by inspection, without large amounts of messy algebra and the inevitable associated algebra mistakes. A great deal of insight can be gained into the operation of the circuit using this method. It becomes clear which ct)mponents dominate the circuit response at various frequencies, and so .suitable approximations become obvious. Analytical expressions for the approximate corner frequencies and asymptotes can be obtained directly. Impedances and transfer functions of quite complicated networks can be constructed. Thus insight can be gained, so that the design engineer



S.3 Graphical Conslmction of hapsdances and Transfer Funaions

can modify the circuit to obtain a desired frequency response.

The graphical construction tnethod, also ktiowti as doitig algebra on the graph, involves use of a few simple rules for combiuitig the magnitude Bode plots of impedances atid transfer futictiotis.

8.3.1 Series Impedances: Addition of Asymptotes

A series connection represents the addition of impedances. If the Bode diagrams of the individual impedance magnitudes are kn[)wn, then the asymptotes of the .4eiies combination are found by simply taking the largest of the individual iuipedauce asymptotes. In many cases, the result is exact. In other ca.ses, such as when the itidividual asymptotes have the same slope, then the result is an approximation; nonetheless, the accuracy of the approximation can be quite good.

Consider the series-connected R-C network of Fig. 8.38. It is desired to construct the magnitude asymptotes of the total series impedance Z(s). where

R lOQ -ЛЛ/

Fig. 8.3S

example.

Series R-C network

(8.135}

Let us first sketch the magnitudes of the individual impedances. The 10 Ii resi.stor has an impedance magnitude of Ю ii => 20 (1ВЙ. This value is independent of frequency, and is given in Fig. 8.39. The capacitor has an impedance magnitude of l/oJC This quantity varies inversely with m, and hence its magnitude Bode plot is a line with slope -20 dB/decade. The line pas.ses through 1 Й 0 dBQ at the angular frequency (Л where

that is, at

(8,136)

(ia)c (i£i)(io*F}

= 10* md/see

(8,137)


-20dBQ

too Hi I kHz to kHz 100 kHz 1 MHz

Fig, H.39 Impedancu mnguitudes < f the individtJal eleraeiits in the netwrrrk of Fig. 8.3S.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 [ 101 ] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300