Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 [ 103 ] 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

100 dB0

80 dBQ

Graphical CotislriicUon of Inipcdatices cnid Transfer Funaions 307

100 Ш


100 Hi

IkHi

10 kHz

100 kHz

Fig. 8.44 Actual impedance magnitude (solid line) Cor ilie series resonant R-L-C example. The inductor and capacitor impedances cancel out at/=and hence Z(/dJ) - Й.

Substitution ofEq. (8.14Й) into Eq. (8.147) leads to

(Й.149)

At (ii = (%, the itiductor and capacitor impedances ai-e equal in magnitude but opposite in phase. Hence, they exactly cancel out in the series impedance, and we are left with Z(jU)(,) = Л, as illustrated in Fig. 8.44. The actual curve in the vicinity of the resonance at ы = ш can deviate significantly from the asymptotes, because its value is determined by R ratherthan (OLor l/toC.

We know from Section 8.1.6 that the deviation ofthe actual curve from the asymptotes at (U = (Ofj is equal to Q. From Fig. 8.44, tme can see that

lano

(8. ISO)

(8.151)

Equations (8.146) to (8.151) are exact resuhs for the series resonant circuit.

The practice of adding asymptotes by simply selecting the larger asymptote can be applied to transfer functions as well as impedances. Forexample, suppose that we have already constructed the magnititde asymptotes of two transfer functions, G, and Cj, and we wish to find the asymptotes of G = Gi + Gj. At each frequency, the asymptote for С can be approximated by simply selecting the larger of the asymptotes for G, and G:

f;,*G,

(8.152)

Corner frequencies can be found by equating expressions for asymptotes as illustrated in the preceding examples. In the next chapter, we will see that this approach yields a simple and powerful method for determining the closed-loop transfer functions of feedback systems.



8.3.3 Parallel Impedances: Inverse Addition пГ jlsymptutes A parallel combmatron represents inverse addition of impedances:

7 = L

(8.153)

If the asymptotes of the individual impedances Z Z, .... are Icnown, then the asymptotes of the parallel combination Z. can be found by simply selecting the smiillest individual impedance asymptote. This is true because the smallest impedance will have the largest inverse, and will dominate the inverse sum. As in the case of the series impedances, this procedure will often yield the exact asymptotes of Z

Let us construct the magnitude asymptotes for the parallel /f~L-C network of Fig. 8.45, using the following element values:

K= lOii i= ImH С = 0.1 pF

(S.l54)


Impedance magnitudes of the individual elements are illustrated in Hg, 8.4S Farallel RLr-C tietwork Fig. 8.46. The asymptotes for the total parallel impedance Z are example, approximated by simply selecting the smallest individual element

impedance, as shown by the heavy line in Fig. 8.46. So the parallel impedance is dominated by the inductor at low frequency, by the resistor at mid frequencies, and by the capaciUtr at high frequency. Approximate expressions for the angular corner frequencies are again found by equating asymptotes:

atm = 03, R = {aL i = y at(0 = fflj, Д = -Ц

(8.135)

These expressions could have been obtained by conventional analysis, combined with the low-Q approximation of Section S.1.7.

FJg. 8.46 Construction of the composite a-symptotes of II ZII. for the parallel R-L-C example. The asymptotes of the parallel combination can be approximated by simply selecting the smallest of the individual resistor, inductor, and capacitor asymptotes.


-20 dBQ

0,1 Q

100 Hz

1кНг

10 kHz

100 kHz

IMHz



S.. GiapiucBt Censmiaiim ofhnpedences and Тгапфг Fmciions

80 dBQ 60dBii

Fig. 8,47 Graphital construction of impedance asymptotes 40 dB£l for the parallel u-l-c example, with r increaseti to 1 V.q, 20 dBft

-20 dBQ


o.i a

100 Hz

1 kHz

10 kHz

100 kHi

1 MHz

8.3.4 Parallel Resonant Circuit Example

Figure 8.47 illustrates what happeti.4 when the value of Л m the parallel R~L-C network is increased to 1 кЙ, Tlie a.symptotes for ] Z tlieti bieconie independent of R, ;uid change directly from iiih to i/юС at angular frequency Olg. The comer frequency Щц is now the frequency where the inductor and capacitor asymptotes have equal value:

(8.156)

which implies that

(8.157)

At и = Шц, the slope of the asymptotes of IIZ changes from +20 dB/decade to -20 dB/decade. and hence there aie two poles. We should investigate whether peaking occurs, by determining the exact value

of IIZ Ij at (0 = Шц, as follows:

(3.158)

2(jt0o) = jt0ui

1

Substitution ofEq. (8.156) into (8.158) yields

Z(Mi) = T-7

R jR R R R Я

- = /f

(8.159)

So at Ы = Щ, the impedances of the inductor and capacitor again cancel out, and we are left with Z(j<i) = R. The values of L and С determine the values of the asymptotes, but R determines the value of the actual curve at fJ = dig.

The actual curve is illustrated in 8.48. The deviation of the actual curve from the asymptotes at (ii=0)o is



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 [ 103 ] 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300