Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 [ 104 ] 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. S.48 Aeiual impedance magnitude (snlid line) for the pai-allel R-LC example, The inductor and capacitor iiriped-ance.4 cancel out at / = and hetice Z(ycu,} = /;,

80 dsn

60dBn 40 dBQ 20 dBii OdBQ

-20 dBO

/ \....

Actual carve -~S~~~y\iii;i\..,i

........к

10 ш 1ш

100 i2 10 Й 1 Q 0.Ш

100 Ш

i kHz

10 kHz

100 kHz

I МНг

(8,160)

(8.161)

Equations (8.156) to (8.161) are exact resuh.s for the parallel resonaill circuit.

The graphical construction method for impedance magnitudes is well kntiwn, and reactance paper be purchased commercially. As illustrated in Fig. 8.49, the magnitudes of the impedances of various inductances, capacitances, and resistances are plotted on setnilogarithmic axes. .Asymptotes for the impedances of R-LC networks can be sketched directly on these axes, and numerical values of corner frequencies can then be graphically determined.


-iOdBfl

10 Hz

100 Нг

I tHz

10 kHz

100 kHz

Fig. 8.49 Reactance paper : an aid for graphical cunstfuctioii of impedances, with the magnitudes of various inductive, capucitive, and i-esistive impedances preplotted.



s.3 Giaphical Comtiucnim of bipeciances and Trmufer Funcliotis 311

His)




Fig. 8.50 Two-pole low-pass filter based on voliage divider circuii: (a) transfer function H{x), (b) determination of by setting independent sources id zero, (c) determination uf Zjfj).

8.3.5 Voltage Divider Transfer Fun<:tians: Division of Asymptutes

Usually, we can express transfer functions in terms of impedances-for example, as the ratio of two impedances. If we can construct these impedances as described in the previous sections, then we can divide to construct the transfer function. In this section, constniction of the transfer function H(s) of the two-pole R-L-C low-pass filter (Ftg. 8.50) is discussed in detail. A ftlter of this form appears in the cimonical model for two-pole coitverters, and the results of this sectioit aie applied in the converter examples of the next section.

The familiar voltage divider formula shows that the transfer function of this circuit can be expressed as the ratio of impedances Zj/Zj, where Z, =Zj -l-Zj is the network input impedance:

z, + z,

(R.162)

For this example, Zj(y) = sL, and Zj(j) is the parallel combination of Д and 1ЛС. Hence, we can find the transfer function asymptotes by constructing the asymptotes of Zj and of the .series combination represented by Zt and then dividing. Another approach, which is easier to apply in this example, is to multiply the numerator and denominator of Eq. (8.162) by Z,:




Fig. 8.51 Graphical cwistmclioii of HandZ ,of the vohage divider circuit: (a) output impedance Z (b) transfer function И.

4 )

(8,(63)

where Z - Z {{Z is the output impedance of the voltage divider. So another way to construct the voltage divider transfer function is to first construct the asymptotes for Z; and for the parallel combination represented by Z, and then divide. This method is useful when the parallel combination 7, \\ is easier to construct than the series combination Z, + Z. It often gives a different approximate result, which may be more (or sometimes less) accurate than the result obtained using Z, . The output impedance Z, in Fig. 8.5()(b) is

(3.164)

The impedance of the parallel K-L-C network is constructed in Section S.3.3, and is illustrated in Fig. 8.51 (a) for the high-Qca.se.

According to Eq. (S.163), the voltage divider transfer function magnitude is j = II Z, IK [ Z, . This quantity is constructed in Fig. 8.51(b). For ffl < [Oq, the asymptote of Z, [ coincides with II Zj : both iire equal to toL. Hence, the ratio is Z , / Z, = 1. For Ш > (i), the asymptote of Ц Z,, is ItoC,while II Zj is eqtial to (uL. The ratio then becomes Z , / Z, = I/mLC, and hence the htgh-


...... CUL FiK, 8.52 Effect of iiiciBasing L on the output

impedance asyinplotes, corner frequency, and



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 [ 104 ] 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300