Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 [ 105 ] 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

НА Graphical Cnitiiructinn of Convener Transfer Functions


Fig. 8.53 SmuU-signal model of the btick tonverter, with input impedance Z; (s> and output impedance Z l.j) explicitly defined,

frequency asymptote has a -4f) dB/decade slope. At to = tO(j, has exact value R. while Z has exact value The ratio is then Wfjui ) ] = 1 Z ,(;ffi,) \\l\\ 2,(jffl(,) ]] = RIR - Q. So the filter transfer function Я has the same Criound Q as the impedance Z ,,.

It now becomes obvious how variations in element values affect the salient features ofthe transfer function and output impedance. For example, the effect of increasing L is illustrated in Fig. 8.52. This causes the angular resonant frequency O),) to he reduced, and also reduces the Q-factor.

GRAPHICAL CONSTRUCTION OF CONVERTER TRANSFER FUNCTIONS

The small-signal equivalent circuit model ofthe buck converter, derived in Chapter 7, is reproduced in Fig. 8.53. I et us construct the transfer functions and terminal impedances of this converter, using the graphical approach ofthe previous section.

The output impedance Z ,.i) is found with the d(,s) and vjs) sources set to zero; the circuit of Fig. 8.54(a) is then obtained. This model coincides with the parallel R-L-C circuit analyzed in Sections 8.3.3 and 8.3.4. As illustrated in Fig. 8.54(b), the output impedance is dominated by the inductor at low frequency, and by the capacitor at high frequency. At the resonant frequency/p, given by

iTifUC

(8.165)

the output impedance is equal to the load resistance R. The Q-factor of the circtiit is equal to


2 ,()


Fig, 8.54 Construcii of buck convener output impcdntice 2Jx): (a) circuit model; (b) impedattee asymptotes.




<b)

Z,(j)

.......coC

A L 2ПДС

Л ............

In/LC


Fig. 8.5S Construclion of (he input impedance Z; {i) for the buck converter: (a) circuit model; (b) the individual resistor, inductor, and capacitor impedance magnitudes; (c) construction of the impedance magnitudes Z J and { ; (d) construction of II Z, , ](; (e) final result Z( Ij.

..,. c


(8.166)

where

(8,167)

Thus, the circuit is lightly damped (high Q) at light load, where the value of Я is large.

The converter input impedance is also found with the and v,(j) sources set to zero, as illustrated in Fig. 8.55(a). The input impedance is referred to the priinary side of the 1:D transformer, and is equal to

= 2,(.,} + Z,(,)

(8.168)

where



S.4 Graphica! Consrruclion of Convener Transfer Functions 315

Z,{s)sL (8,169)

Z,W = fil; (Si )

We begin oonsiniedoii of (he impedance asymptoies corresponding to Eqs. (S.168) (o (8.170) hy constructing the individual resistor, capacitor, and inductor impedances as in Fig. S.55(b). The impedances in Fig. S.55 are constructed for the case ft > ,], As illu.strated in Fig. S.55(c), i 2, { coincide.4 with the inductor reactance uiL, The impedance Zj is asymptotic to resistance R at low frequencies, and to the capacitor reactance l/w6at high frequency. The resistor and capacitor irsymptotes intersect at corner frequency /, given by

According to Ь]. (8.168), the input impedance Z, (s) is equal to die .series ctmibinatitm ofZ(j)and Z(s), divided by the square ofthe turns ratio D. The asymptotes for the series combination [Z,(,v) -(- Z2(.v)] are found by selecting the larger ofthe f and asymptotes. The J Z and Zj asymptotes intersect at frequency/(), given by Eq. (8.165). It can be seen from Fig. 8.55(c) that the seiies combination is dominated hy Zj for/<Уц, and by Z[ for/>. Upon scaling the [Z[{j) + Zis)] asymptotes by the factor 1/D, the input impedance asymptotes of Fig. 8.55(e) iire obtained.

The zeroes of Z, (.v), at frequency/о, have the same -factor as the poles of Z ,Ci) [Eq. (8.166)]. One way to .see that this is true is to note that the output impedance tan be expressed as

Z,(s)Z,(s) Z)Z,isf -Z,(i) + Z,(.v) D% is)

Hence, we can relate toZ;,(ji) as follows:

The impedances I] Z, j, Zj ], and Z, are illustrated in Fig, S.55(d), At the resonant frequency q, impedance Z has magnitude and impedance Zhas magnitude approximately equal to Wp.Tlie output impedance Zjjhas magnitude R. Hence, Eq. (8.173) predicts that the input impedance has the magnitude

i.h- = (8.m)

Atf-ff the asymptotes ofthe input impedance have magnitude Я()70. The deviation from the asymp-tote.s is theieft)re equal to Q = as illustrated in Fig. 8.55(e).

The control-to-output transfer function 6r /j) is found with the 9(s) source set to zero, as in Fig. 8.56(a). This circuit coincides with the voltage divider analyzed in Section 8.3.5. Hence, G.Js) can be expressed as



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 [ 105 ] 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300