Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 [ 108 ] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

refere[4ces

[ I] R.D. MlDDLEBROOK, Low Entropy EKptessions: The Key to Design-Oriented Analysis, IEEE Frontiers

in Education Conference, 1991 Proceedings, pp. 399403, Sept. 1991.

[2] R. D. MlDDLEBROOK, Methods of Design-Oriented Analysis: The Quadratic Equation Revisited, IEEE

Frrmtiers in Education Conference, 1992 Proceedings, pp. 95-102, Nov. 1991.

[3] F. B.eizeoar, S. Cuk. and R. D. MiDDLEEEiOOK, Using Small Computers to Model and Measure Magni-

tude and Pha.se of Regulator Transfer Functions and Ump Gan, Froceeilings (}f Ptjweicon S, April 1981. Also in Advances in Switciied-Mode Power Conversion. Irvine: Teslaco, Vol, I, pp. 251-278, 1981,

[4] H. W. Ott, Noise Reduction Teclniiqites in Electronic Systems, 2nd edit., .New York: John Wiley & Sons,

1988, Chapter 3.

Problems 8.1

Express (he gains represented by lhe asymptoles of Figs. 8.62(a) 10 (c) in factored pole-zero fiiiin. You may assume that all poles and zeroes have negative teal parts.


/[-20 dB/decade +20 dB/deeade

Fig. 8.62 Gain asymptotes for Pmblcin 8,1.

8J Express the gains represented by the asymptotes of Figs. 8.63(a) to (c) in factored pole-zero form. You

may assume that all poles and zeroes have negative real parts.

S.3 Derive analytical expressions for the low-frequency asymptotes of the magnitude Bode plots shown in

Fig, S.63(a) to (c),

8J Derive analytical expressions for the three magnitude asymptotes of Fig, 8,16.




+20 dB/decade


20 dB/decade


Fig. S.63 Gain aNyinpfotes ior Problems 8,2 and 8.3.

8.5 An experimenlally measured iransfer Tunulion. Figure 8.64 uonlains experimenlally measured magni-

lude and phase duLa for (he gain function A(.f) of a certain amplifier. The object of this probleni is to find an expression forAtj). Overlay asymptotes appropriate on the magnitade and phase data, nd hence deduce numerical values tor the gain asymptotes and corner frequencies of Your magnitude and

40 dB

30 dB

20 dB

10 dB


10 Hz

too Hz

1 kHz

10 kHz

100 kHz

1 MHz

Fig. 8.64 ExpcrimentaHy-incitsured magnitude and phase data. Pi-oblem



phase asymploles musl, of course, follow all of lhe rules: magnilude slopes musl be makiples of ±20 dB per decade, phase slopes for real poles musl be mutuples of ±45° per decade, eLc. The pha.se and magni-(ude asymptotes must be consistent wilh each other.

It is suggested that you start by guessing А(.т) based on the magnitude data. Then construct the phase asymptotes for your guess, and compare them with lhe given data. Iflhere are discrepancies, then modify your guess accordingly and redo your magnitude and phase asymptotes. You should turn in: (1) your analytical e?:pression for A(s). wilh numerical values given, and (2) a copy of Fig, S.64, with your magnitude and phase a.symptotes superimposed and wilh all break frequencies and slopes clearly labeled.

SjS An experimentally-measured impedance. Figure 8.65 contains experimentally measured magnitude and

phase data for the driving-poinl impedance Z(s) of a passive network. The object of this problem is the find an expression for Z(s). Overlay asymptotes as appropriate on the magnitude and phase data, and hence deduce numerical values for the salient features of the impedance function. You should turn in: (1) your analytical expression for ZfO, wdlh numerical values given, and (2) a copy of Fig. 8.65, wilh your magnitude and phase asymptotes superimposed and wilh alt salient features and asymptote slopes clearly labeled.

30 dBQ

20 dBQ

Fig. 8,65 Impedance tnagni-tude and phase data, Froblem 8.6.


-lOdBn

to Hz

100 Hz

1 kHz

10 kHz

8.7 In Section 7.2.9, the small-signal ac model of a nonideal flyback converter is derived, wilh the result illiistraled in Fig. 7.27. Construct a Bode plot of the magnitude and phase of the converter output impedance Z, ,(j-). Give both analytical expressions and numerical values for all important features in your plot. Note: Zis) includes the load resistance R. The element values are: D = 0.4, n ~ 0.2, Д = й i2, L = 600 fiU, С = 100 fiK, Л = 5 Q.

8.8 For the nonideal flyback converter modeled in Section 7.2.9:

(a) Derive analytical expressions for the control-to-oulput and line-to-output transfer functions G/,s) and G.(.v). Express your results in standard normalized form.

(b) Derive analytical expressions for the salient features of tbese transfer functions.

(c) Construct the magnitude and phase Bode plots of lhe control-to-output transfer function, using



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 [ 108 ] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300