Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 [ 112 ] 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

lator system. The compensator network is designed to attain adequate pliase margin and good rejection of expected disturbances. Lead compensators and P-D controllers are used to improve the phase margin and extend the bandwidth of the feedback loop. This leads to better rejection of high-frequency disturbances. Lag compensators and P-I controllers are used to increase the low-frequency loop gain. This leads to better rejection of low-frequency disturbances and very small steady-state error. More complicated compensators can achieve the advantages of both approaches.

Injection methods for experimental measurement of loop gain are introduced in Section 9.6. The use of voltage or current injection solves the problem of establishing the correct quiescent operating point in high-gain systems. Conditions forobtaining an accurate measurement are exposed. The injection method also allows measurement of the loop gains of unstable systetns.

9.2 EFFECT OF NEGATIVE FEEDBACK ON THE NETWORK TRANSFER FUNCTIONS

We have seen how to derive the small-signal ac transfer functions of a switching converter. For example, the equivalent circuit model of the buck converter can be written as in Fig. 9.3. This equivalent circuit Contains three independent inputs: the control input variations d. the power input voltage variations P and the load current variations The output voltage variation V can therefore be expressed as a linear combination of the three independent inputs, as follows:

v{s)G,

where

d(.s)

convertet conlrol-to-outpul transfer function

(y.lii)

if ill

converter line-to-output transfer function

(9.1b)

convener output impedance

(9.lL)

The Bode diagrams of these quantities are constructed in Chapter 8. Equation (9.1) describes how distur-

Q-, ,-ПЛПГ


Fig, 93 Smitll-signal converter inodel, which rcpitisents variations in d, and



9.2 Effect nf Negative Feedltcick on tlie Netw/orli Ттпфг Functions 335

bantes and Jj, y propagate to the output v, through the transfer funetion G.(y} and the output imped-anee Z i{s)- If the distuibanees and if j are known to have some maximum worst-ease amplitude, then Eq. (9.1) tan be used to compute the resulting worst-case open-loop variation in v.

As de.scribed previously, the feedback loop of Fig. 9.2 can be used to reduce the influences of v, and ( j on the output v. To analyze this system, let us perturb and linearize its averaged signals about their quiescent operating points. Both the power stage and the control block diagram are perturbed and linearized:

v,(O = V, + 0/) etc.

In a dc regulator system, the reference input is constant, so v,p) - 0. In a switching amplifier or dc-ac inverter, the reference input may contain an ac variation. In Fig. 9.4(a). the converter model of Fig. 9.3 is combined with the petturbed and linearized control circuit block diagram. This is equivalent to the reduced block diagram of Fig. 9.4(b). in which the converter model has been replaced by blocks representing Eq. (9.1).

Solution of Fig. 9.4(b) for the output voltage variation v yields

G,G,yVV . Z, (9.3)

which can be written in the form

-/H 1 + r 1 -t-r 1 -t-r

with

Г{1) = W(j)G (i)G /.i)/V = loop gain

Equation (9.4) is a getieral result. The loop gain TTi) is defined iti general as the product of the gains around the forward and feedback paths of the loop. This equation .shows how the addition of a feedback loop modifies the transfer functions and performance ofthe system, as described in detail below.

9.2.1 FEEdback Reduces the Transfer Functions firORt Disturbances to the Output

The transfer function from v, to v in the opeti-loop buck conveiter of Fig. 9.3 is G.X ). as given in Eq. (9.1). When feedback is added, this transfer function becomes

v (.v)

c,.ns)

from Eq. (9.4), So this transfer function is reduced via feedback by the factor 1/(1 4 T{i)). If the loop gain r(.t)is large in magnitude, then the reduction can be substantial. Hence, the output voltage variation i> resulting from agiven v, variation is attenuated by the feedback loop.



1; M(D) ТЛПГ


Reference input

Error signal

)

Hums)

Pulse-width modulator

His)

Sensor gain

Reference input

Compensator

ac tine variation

Pulse-wldtb modulator

Error signal

GXs)

i,(s)

dis)

OJs)

Duty cycle


Load current variation

vis)

variation -------------

Converter power stage

Output voitage variation

Hisms)

His)

Sensor gain

¥ig. 9Л Voltage regulator system stnall-sjgrial model: (a) with converter equivalent circuit; (b) complete block diagram.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 [ 112 ] 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300