Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 [ 118 ] 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


i 11:

10 Hz

100 Hi

IkHi

100 kHz

Fig. 9.19 Compeiibation nf a loop gain containing a single pole, using a kig (Pf) compensator. The loop gain magnitude is incicased.

(9.39)

The compensator transfer function t)f Eq. (9.38) is used, so that the compensated lt)op gain is T(s)-TJs)GJ,s:). Magnitude and phase asymptotes of T(.\) are also illushated in Fig. 9.19. The compensator high-frequency gain G is chosen to ohtain the desired crossover frequency /.. If we approximate the compensated loop gain hy its high-frequency asymptote, then at high frequencies we can write

(9.40)

At the crossover frequency/ = /., the loop gain has unity magnitude. Equation (9.40) predicts that the crossover frequency is

(9.4!)

Hence, to obtain a desired crossover frequency /., we should choose the compensator gain as follows:

(9,42)

The corner frequency Д is then cho.sen to he sufficiently less than such that an adequate phase margin ismaintained.

IVlagnitude asymptotes of the quantity 1,(1 + T{s)) are constructed in Fig. 9.20. At frequencies




-40 dB

I Hz 10 Hz 100 Hz IkHz 10 kHz 100kHz

Mg. 9.20 Cniistruction nf II 1/(1 + 7) for tlie i/.tompeiisuted oxamjile of Ilg, 9.19,

less than the Weorapensator improves the rejeetion ofdistiirbances. Aide, where the magnitude of G. approaches infinity, the magnitude of 1/(1 +7) tends to zero. Hence, the clt)sed-loop disturhanee-to-out-put transferfunctions, such as Eqs. (9.30) and (9.31), tend to zero atdc.

9.5.3 Combitted (PID) Compensator

The advantages ofthe lead and lag compensators can be combined, to obtain both wide bandwidth and zero steady-state error. At low frequencies, the cotnpensator integrates the error signal, leading to large low-frequency loop gain and accurate regulation of the low-frequency components ofthe output voltage. At high frequency (in the vicinity ofthe crossover frequency), the compensator intrt)diices phase lead into the lt)op gain, improving the phase margin. Such a compensator is sometimes called a PID ctmtrol-ler.

40 dB

20 dB

-20 dB -40 dB

-r--

457(lecadej-

Of:/ ,/10

...................................

-flOVdKVs

io/,t

0* -90* -180

Fisj. 9.21 Magnitude and phase asymptotes of ttie combined (P!D) compensator transfei funcdon G of Eq, (9,43).



A typical Bode diagram ot a practical version of this compensator is illustrated in Fig. 9.21. The compensator has transfer function

(4,43)

The inverted zero at frequency j) functions in the same manner as the PI compensator. The zero at frequency/adds phase lead in the vicinity of the crossover frequency, as in the PD compensator. The high-frequency poles at frequencies and/J,j must be present in practical compensators, to cause the gain to roll off at high frequencies and to prevent the switching ripple from disrupting the operation of the pulse-width modulator. The loop gain crossover frequency is chosen to be greater than Д and , but less than fpi and/j,3.

9.5.4 Design Eicample

To illustrate the design of W and PD compensators, let us consider the design of a combined PID compensator for the dc-dc buck converter system of Fig. 9.22. The input voltage vit) for this system has nominal value 28 V. li is desired to supply a regulated 15 V to a 5 A load. The load is modeled here with a 3 Й resistor. An accurate 5 V reference is available.

The first step is to select the feedback gain H{s). The gain H is chosen such that the regulator produces a regulated 15 V dc output. Let us assume that we will succeed in designing a gMxi feedback system, which causes the output voltage to accurately follow the reference voltage. This is accomplished via a large loop gam T, which leads to a small error voltage: \\, ~ 0. Hence, Ilv ~ v.. So we should choose

(Ч.44)

The quiescent duty cycle is given by the steady-state solution of the converter:


Transistor gate driver

Pulse-widilj

modulator

Error

signal

Sensor gain

Vj = 4 V Compensator

Fig. 9.22 Desigu exainpic.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 [ 118 ] 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300