Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 [ 120 ] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

40 dB


I Hz

10 Нг.

] kHz

to kHz

100 Шг

Fig. 9.27 ID compeiiNutor triinsfer function G, design extinipiL;,

The closed-loop disturbance-to-output transfer functions are given by Eqs. (9.5) and (9.6).

The uncompensated loop gain 7jj(.v), with unity compensator gain, is sketched in Fig. 9.26. With GJi) = i, Eq. (9.54) can be written

T (.0 = 7;-

where the dc gain is

(9.55)

(9,56)

The uncompensated loop gain has a crosstwer frequency of approximately I.S kHz, with a phase margin of less than five degrees.

Let us design a compensator, to attain a crossover frequency of/ = 5 kHz, or one twentieth of the switching frequency. From Fig. 9.26, the uncompensated loop gain has a magnitude at 5 kHz of approximately T (/ (4) = 0.093 -20.6 dU. So to obtain unity loop gain at 5 kHz, our compensator should have a 5 kHz gain of+20.6 dB. In addition, the ct)mpensator should improve the phase margin, since the phase t)f the uncompensated loop gain is nearly -180° at 5 kHz. So a lead (PD) compensator is needed. Let us (sotnewhat arbitrarily) choose to design for a phase margin of 52°. According to Fig. 9.13, this choice leads to closeddoop poles having a g-factor of 1. The unit step response, Fig. 9.14, then exhibits a peak overshot)t of 16%. Evaluation of Eq. (9.36), with/ = 5 kllz and 0 = .52°, leads to the following compensator pole and zero frequencies:

(9,57)

To obtain a ctimpensator gain of 20,6 dB 10.7 at 5 kHz, the low-frequency compensator gain must be



40 dB 20 dB OdB -20 dB 0 dB

SA l9JdB J\jQ = - 19.5

................................................................. 1 кНг Л -.

1.7 kHz

5 kHz

900 Hz

170 Hz



1,4kHzi[7 kHz

uSiz-......Y... :-

-270*

1 Hz 10 Hz 100 Hz I kHz

Fig. 9.28 The compeiLsuted luop gain of Eq, (9.59),

10 kHz 100 kHz

V Л

(9,58)

A Bode diagram of the PD cotnpeiisatcjr magnittide and phase is sketched in Fig. 9.27. With this PD controller, the loop gain becomes

7-(.v)=7-,G

1 +7:

(9.59)

The compensated loop gain is sketched in Fig. 9.28. It can be seen that the phase of T{.;) is approximately eqnal to 52° over the frequency range of 1.4 kHz to 17 kHz, Hence variations in component values, which canse the crossover frequency to deviate somewhat from 5 kHz, should have litde impact on the phase margin. In addition, it can be seen from Fig. 9.28 that the loop gain has a dc magnitude of ТдО.у I .7 dB.

Asymptotes of the quantity 1/(1 +Г) are constructed in Fig. 9.29. This quantity has a dc asymptote of-18.7 dB. Therefore, at frcqticticics less than 1 kHz, the feedback loop attenuates output voltage disturhances by 18.7 dB. Forexample, suppose that the input voltage .(f) contains a 1(X) Hz variation of amplitude 1 V. With no feedback loop, this disturbance would propagate to the output according to the open-lt)op transfer function Gy(i), given in Eq. (9.51). At 1Ш Hz, this transfer function has a gain essentially equal to the dc asymptote D = 0.536. Therefore, with no feedback кюр, a КЮ Hz variation of amplitude 0.536 V would be ohsetved at the output. In the presence of feedback, the clo.sed-loop line-to-output transfer function ofEq. (9.5) is obtained; for our example, this attenuates the 1Ш Hz variation by an additit)nal factor of 18.7 dB = B.6. The 1Ш Hz output voltage variation now has magnitude 0.536/8.6 = ().()62V.

The low-frequency regulation can be further improved by addition t)f an inverted zero, as discussed in Section 9,5.2. A PID controller, as in Section 9.5,3, is then obtained. The compensator transfer



2g = 9.S=J 19.5 dB


10 Hz

IWHz lk№

Fig. 9.29 Con.flructioii o( l/[ I + 7) lor tlie №-e()npen. ted design exiimpEo of Fig. 9,2S. function becomes

too kHz

(9.Й0)

The Bode diagram of this compensator gain is illustrated in Fig. 9.30. The pole and zero frequencies /, and are unchanged, and are given by Eq. (9.57). The raidbandgain is chosen to he the same as the previous Gjfl, Eq. (9.58). Hence, for frequencies greater than Jj, the magnitude of the loop gain is

40 dB

20 dB OdB f -MdB dB


457decade Jl-j,4S7deC

4/10


-180

1 Hi 10 Hi 100 Hi I к Hi

tig, 9.30 HD compensator tiantter futvction. Eq. (9.60).

10 kill too kHz



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 [ 120 ] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300