Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 [ 13 ] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Problems

rent, [, as a funcLion of Д V, and R. Sltelch your resulL -vs. D.

2JS For tfie converter of Fig. 2.31, derive expressions for Itie inductor current ripple Ai iind the ciiputitor

voltage ripple Av,

2.9 To reduce the switching harmonics pi-esent in the input cuiTent of a certain buck converter, an input filter

consisting of inductor i[ and capacitor is iidJed as shown in Fig. 2.32, Such filters are commonly used to meet regulations limiting conducted electromagnetic interference (emi). Fcrthis problem, you may iissume thiit all inductance anJ capacitance values are sufficiently large, such that all ripple magnitudes are sniiill.

Fig. 2,32 Addition of L-C input filter to buck converter, РгоЫе m 2.У.

(a) Sketch the triinsistor current waveform i,{()

(b) Derive analytical expressions for the dc components of the ciipacitor voltages iind inductor currents.

(c) Derive analytical expressions for the peak ripple magnitudes of the input filter inductor current and capacitor vohage.

fd) Given the following vjlues;

Input voliage

Output voltage

Switching frequency

Load resistance

V, = 48V V= ЗЙ V /,= too kHz R = (,il

Select values for i and such that fi ) ihe peak voltage ripple on Cj, Avj, is two percent of the dc component Vi- tf) input peak current ripple Ai is 20mA,

Extra credit problem: Derive exact analytical expressions for (i) the dc component of the output voltage, and (fi ) the peak-lo-peak inductor current ripple, uf the ideal buck-boost converter operating in steady stale. Do nol make the small-ripple approximation.



This page intentionally left blank



Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Let us now consider the basic functions performed by a switching converter, and attempt to represent these fuitctions by a simple equivalent circuit. The tlesigner of a converter power stage must calculate the network voltages and ttirrents, and specify the power components accordingly. Losses and efficiency are of prime importance. The use of equivalent circuits is a physical ami intuitive approach which allows the well-known techniques of circuit analysis to be eniployetl. As notetl in the previous chapter, it is desirable to ignore the small but complicated switching ripple, and model only the important dc components of the wavefonns.

The dc transformer is used to model the ideal functions performed by a dc-dc converter [1-4]. This simple model correctly represents the relationships between the dc voltages and currents of the converter. The model can be refined by including losses, such as semiconductor forward voltage drops and on-resistances, inductor core and copper losses, etc. The resulting mtxiel can be directly solved, to find the vohages, currents, losses, imd efficiency in the actual nonideal converter.

3.1 THE DC TRANSFORMER MODEL

As illustrated in Fig. 3.1, any switching converter contains three ports: a power input, a power output, and a control input. The inptit power is prtK;essed as specified by the control input, and then is output to the load. Ideally, these functions are performed with 100% efficiency, and hence

Я =f (3.1)

Vl=VI (3.2)



1 2 3 4 5 6 7 8 9 10 11 12 [ 13 ] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300