Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 [ 132 ] 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


©

Fig, ]ft,20 .Stvtia) practical appmaclies lo dajiipiiij + (tie single-setliun input lilier: (a) Й-С paralid damping, (b) Rf-Lf patiiUel damping, (c) fi-ij, series damping.

ТППР-

ЛЛ/-

30 dB


-30 dB

Fig. 10.2] Coinparisoi! of output intpedatwc curves for Optiflia) paraiiol Rjlfj dainpitig

with undamped and several suboptfinal designs. For this example, н = LJL - 0,5 IfJ



II71 -ff 4ШЩ (10.30)

The value of damping resistance thai leads to optimum damping is described by

-/7 7 (10.31)

5l- ilMlM.

V V 2n-(4 4- )

The above equations allow choice of the damping values and C,.

For exatnple, lets redesign the dunping network of Section 10..3.2, to achieve the same peak Output impedance zOw) Ищщ ~ > while minimizing the value of the biockingcapacitance C . From Section 10.3.2. the other paiameier values are /tf,= 0,84 ii, Cy= 470 )i¥, and iy= 330 /iH, First, we solve Eq. (10.30) lo find the required value of n:

(10,32)

Evaluation of this expression with the given numerical values leads to n = 2.3. The blocking capaciloris therefore required to have a value of rtC = 1200 ftF. This is one-quarter ofthe value employed in Section 10.3.2. The value of is then found by evaluation ofEq. (10.31), leading to

The output impedance of this filter design is compiired with the ouiput impedances ofthe original undamped filler of Section 10.3.1, and of the suboptimal design of Section 10.3.2, in Fig. 10.22. It can be

10.4.1 Ду-С Parallel Damping

Optimization of (he filler neiwork ol Fig. \\).2{){ii) and Section 10.3.2 was described in [lOJ. The high-frequency aiienuation of ihis filter is noi affected by ihe choice of Cj, andthehigh-frequency asympioie vs idenlical lo lhai of the original undamped filter. The sole iradeolT in design ol the damping elemenls for this filler is in ihe size ofthe blocking capacitor Cj vs. ihe damping achieved.

Forthis filler, let us define thequantity n as the ratio ofthe blocking capacitance lo ihe fiber capacitance C:

= (10.28}

For the optimum design, the peak fileeroueput impedance occurs at the frequency

The value ofthe peak output impedance for the optimum design is



tOdBil

-10 dBQ

- 20 ива

-JOdBfl

100 Hi

Undamped

Suboptimal damping

= 1 n


lO kHz

Fig. 10.22 Comparison of lhe output impedances of the design with optima! parallel RfC), damping, the suhopti-mal design of Section 10.3,2, and ihe original undamped filter,

seen that the optimally damped fdter does indeed achieve the desired peak output impedance of 1 Si, at the slightly lower peak frequency given by Et]. (10.29)

The lij-Cij parallel damping approach finds significant application in dc-dc converters. Since a series resistor is placed in series with C; Cj, can be realized using capacitor types having substantial equivalent series resistance, such as electrolytic and tantalum types. However, in some applications, the approaches of the next subsections can lead to smaller designs. Also, the large blocking capacitor value may be undesirable in applications having an ac input.

10.4.2 /f-if, Parallel Damping

Figure 10.20(b) illustrates the placement of damping resistor Kyin parallel with inductor fy. Inductor Lg causes the filter to exhibit a two-pole attenuation characteristic at high frequency. To allow Rto damp the filter, inductor L, should have an impedance magnitude that is sufficiently smaller than fiat the filter resonant frequency j. Optimization of this damping network is described in [17].

With this approach, inductur Lj, can be physically much smaller than L. Since R is typically much greater than the dc resistance of Lj-, essentially none of the dc current flows through Lj,. Furthermore, could be realized as the equivalent series resistance of ij at the filter resonant frequency f. Hence, this is a very simple, low-cost approach to damping the input filter.

The disadvantage of this approach is the fact that the high-frequency attenuation uf the filter is degraded: the high-frequency asymptote of the filter transfer function is increased from l/tuLy to ]f(ii\L\\Li)Cj: Furthermore, since the need for damping limits the maximum value of ij significantioss of high-frequency attenuation is unavoidable. To compensate, the value of must be increased. Therefore, a tradeoff occurs between damping and degradation of high-frequency attenuation, as illustrated in Fig. 10.23. For example, limiting the degradation of high-frequency attenuation to 6 dB leads to an optimum peak filter output impedance of Jb times the original characteristic impedance Л,, Additional damping ieads to further degradation of the high-frequency attenuation.

The optimally damped design (i.e., the choice of Яу that minimizes the peak output impedance



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 [ 132 ] 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300