Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [ 141 ] 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

d(t)


Fig. 11.13 Averaged models of the gsntrul two-switch ntitwork in a tuiSviirtcr operating in DCM: (a) large-signal

model, (h) small-signal model,

= (U.36>

Here, D is the quiescent value of the transistor duty cycle, is the tjiiiescent value of the applied average transistor voltage {v(t))y, etc. The quantities 0), v,(0, etc., are small ac variations about the respective quiescent values, it is de.siied to linearize the average switch network terminal eqnation.s (11.15) and (11.16).

Equations (11.15) and (11.16) express the average terminal currents {((r))j, and {(3(/))j, as functions ofthe transistor duty cycle d(t) ~ dit) and the average terminal voltages {v(t)) and (,v.{t))j.. Upon perturbation and linearization of these equations, we will therefore find that /jW and l2(t) are expressed as linear functions ot d(t), vif), and vO)- So the small-signal switch network equations can be written in the following form:

t = +Jl?+ilVi

2 = -7 + J2f-t-Sif,

(11,37)

These equations describe the two-port equivalent circuit of Fig. 11.13(b).



The parameters and g. tan be found by Taylor expansion ofEq. (11.15), as de.seribed in

Section 7.2.7. The average transistor current (i,(0) ,Eq. (11.15), can be expressed in the following form:

(И.ЗЙ)

Let us expand this expression in a three-dimensional Tavlor series, about the quiescent operating point

n = V,

+ v.,(r)-

v, = V,

(lt,39)

+ higher-order nonlinear terms

For simplicity of notation, the angle brackets denoting average values are dropped ш the above equation. The dc terms on both sides ofEq. (1 1.39) must be equal:

(11,40)

As tisual, we linearize the equation by discarding the higher-order nonlinear terms. The remaining first-order linear ac terms on both sides of Eq. (11.39) are equated:

,(t) = V,{t)-i- + Vj{t)g,i.d(t)j,

(11.41)

where

-df{v V,.Dl

V, = V,

(11.42)

3f\{v,v D)

(11,43)

Dli,{i>)

d = D KliD)

V, ОДДг/)

d = 0

(] 1.44)

Thus, the small-signal input resistance r, is equal to the effective resistance R, evaluated at the quiescent operating point. This term describes how variatioii.4 in (V(r))j affect (i,(0) , via fi ,(/J). The small-signal



parameter is equal to zero, sinee the average transistor current \ii())]-, is independent of the average diode voltage (Vj(f))j,, The small-signal gain describes how duty cycle variations, which affect the value of Rj,(</), lead to variations in {iU))yy

In a similar manner, ((f))]-, frotn Eq, (11.16) can be expressed as

(11,45)

Expansion of the function/jtf . Vj, Ю in a three-dimensional Taylor series about the quiescent operating point leads to

f ; V D)

+ d(i) -i-T-

(11.46)

+ higliei--K3rder nonlinear terms By equating the dc terms on both sides of Eq. (11.46), we obtain

The higher-order nonlinear terms are discarded, leaving the following first-order linear ac terms:

7) = fj(f)(-)+fl(05 + ()j2

with

Г2 ~~V

= 1 = -1-

(11.47)

(11,4S)

(11.49)

-dV,-

v, = V.

(11.50)

. 4{v>,v d]

SUM) d = D ИЛО)У, <id

d = D

(11.51)

DMRXD)

The output resistance describes how variations in(ij(0)r, influence {ij(0)j-j. As illustrated in Fig. 11.14,



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [ 141 ] 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300