Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 [ 142 ] 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

.1С and DC Equivalent Circuit Modeling of tlie Diseonlinuims Conduerion Mode

Fig. 11.14 Tlie sinail-Mgnal output resistance Ik determined by the slope of the power source charactcfistio at the quiescent operating point.

Load characteristic


1йЫе 11.2 Small-signal OCM switch inocteJ parameters

Switch networlc

General two-switch, Fig. 11.7(a)

Buck,

Rg. 11.16(a) Boost,

2V DR,

DR, 2MV,

2 Ш.

2M-1

DMR,

DMR, 2V,

M-R, M%

----- --i- ---- t Ч n--- (11 \\lD

Fig.ll.l6(b) (iW-l)=R, Di M-\)R, M- (M-lfR, D{M-l)R,

/j is determined by the slope of the power source characteristic, evaluated at the quiescent operating point. For a linear resistive load, = R. For any type of load, it is true that = MKJiD). The parameters 7; and describe how variations in the duty cycle rf(r) and in the average transistor vt>ltage (l,(f))7 (which influence the average power (/)(/))j.) lead to variations in the average dit>de current (((f)) . Values t>f the small-signal parameters in the DCM switch model of Fig. 11.13(b) are summarized in the top row ofTable 11.2.

к small-signal model of the DCM btick-boost converter is obtained by replacing the transistor and ditKle of the converter with the switch mtxlel of Fig. 11.13(b). The result is illustrated in Fig. 11.15. This equivalent circuit can now be solved using conventional linear circuit analysis techniques, to determine the tran.sfer functions and t;ither small-signal quantities of interest.

The same small-signal switch model can be employed to inodel other DCM converters, by simply replacing the transistor and diode with ports 1 and 2, respectively, of the two-port model of Fig. 11.13(b). An alternative approach, which yields more convenient results in the analysis of the buck and boost converters, is to define the switch network as illustrated in Figs. 11.16(a) and 11.16(b), re.spectively. These switch networks can also be modeled using the two-port small-signal equivalent circuit of Fig. 11.16(c)l however, new expressions for the parameters f,j, etc., must be derived. Tlie.se expressions are again found by linearizing the equations of the averaged switch network terminal currents.



Switch ntwark fmnli-$fgnai or modl

Fig. 11.15 Small-signul ac model ofthe DCM buck-boost converter obtained by insertion of the switch network two-port small-slgnul mode] into the original conveiter circuit.

..........iiW

-I-

14 1

j -I-

; J



Fig. 11.16 A convenient way to model the switch networks cif DCM buck and boost conveners: (a) defined terminal quantities of ihe DCM buck switch network, (b) defined terminal quantities ofthe boost switch network, (c) two-port small-signal ac model. The model parameters ore given in Table 11.2,

Table 11.2 lists the .small-signal parameteis for the buck switch network of Fig. 11.16(a) (middle itjw) and for the boost switch network of Fig. 1 l.lfi(b) (bottom row). Insertion ofthe small-signal two-port model into the DCM buck and boost converters leiids to the equivalent circuits of Fig. 11.17.

The small-signal equivalent circuit models of Fig. 11.15 and Fig. 11.17 contain two dynamic elements: capacitor С md inductor L Conti-ol-to-output tr;msfer functions obtainetl by .solving these equivalent circuit models have two poles. It has been shown [2-6] that one ofthe p[)les, due to the capacitor С appeai-s at a l[)w fiequency, while the other pole (and a RHP zero in the са.че of boost and buck-



DCM buck switch network imall-sigaal ac nmdel

f JdQ ,;,т Tl =. f

h h

с <v

- -оТйг -

©

DCM boost switch networlt smalt-signal ac model

h с

R < f

Fig, 11Л7 sitieiil-signul ac nitjilds of (a) tfic DCM but:k tortverter, antl (b) the ГХ1!М botist tonvciter, obtnintjd by replacing the switch netwoi-ks defined in Fig. 11.16(a) and (bj with the sniali-signaJ switch model of Fig. 11.16(c),

boost converters) tJue to the inductor L, occurs at tnuch higher frequency, close to the converter switching frequency. Therefore, iu practice, the DCM buck, boo.st, and buck-boost converters exhibit essentially single-pole transfer functions, which are negligibly influenced by the inductor dynamics.

The small-signal equivalent circuit models have been derived in this section from the large-signal averaged switch network equations (11.15) and (11.16). These equations are based on Eq. (1 1.1 I), which states that the average inductor voltage, and therefore its small-signal ac voltage, is zero. This contradicts predictions of the resulting small-signal models in Figs. 11.15 and 11.17. As a result, we expect that the models derived in this section can be used to predict low-frequency dynamics, while predictions of the high-frequency dynamics due to the inductor L are of questionable validity. Equivalent circuit models that give more accurate predictions of high-frequency dynamics of DCM converters are discussed in Section 11.3.

A simple approximate way to determine the low-frequency small-signal transfer functions of the buck, boost, and buck-boost converters is to let the inductance L tend to zero. If i, is shorted in the equivalent circuits ofFigs. 11.15 and 11.17, the model in all three cases reduces to Fig. 11.18. Thiscir-

DCM Switch network small-signal лс model

с dp R$

Fig. 11.18 l w-frequency ac model obtained by letting Л approach zero, Tlic buck, boost, or buck-boost convert-crs can be motleled, by employing the appropriate piifameters from Table 11.3.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 [ 142 ] 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300