Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 [ 144 ] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

120 V


Fig. 11,20 SEPlC example.

aodBV


50 kHz

Fig. 11.21 Magnitude and pha.4c of the eoiitrol-to-mitput transfer fiiiiction oblaiuetl by siintikuloii of the SEPEC exatnple .shown in Fig. 11.20, for two viihics of the load resi.itiiiiee: fi = ЧОП when the eotiverter operates in DCM (solid liiie.s), and fi - 40fl for which die converter operates in CCM (diished lines).

the simulation setup are described in .Appendix B, Section B.2.1. Figure I 1.21 shows raagnititde and phase responses of the conhol-to-output transfer function obtained for two different values of the load resistance; A! =40 £2, for which the converter operates in CCM, and R - 50 i2, for which the converter operates in DCM. For these two operating points, the quiescent (dc) voltages and currents in the circuit are nearly the same. Nevertheless, the frequency responses are qualitatively very different in the two operating modes. In CCM, the converter exhibits a fourth-order lespon.se with two pairs of high-Q complex-conjugate poles and a pair of complex-conjugate zeros. Another RHP (tight-half plane) zero can be observed at frequencies approaching 50 kHz. In DCM, there is a dominant low-frequency pole followed



by a pair of complex-conjugate poles and a pair of complex-conjugate zeros. The frequencies ofthe complex poles aitd zeros are very close in value. A high-frequency pole and a RHP zert) cttntribiite additit)nal phase lag at higher frequencies.

11.3 HIGH-FREQUENCY DYNAIVHCS OF CONVERTERS IN DCM

As discussed in Section 11.2, transfer functions of converters operating in discontinuous conduction mode exhibit a dominant iow-freqtiency pole. A pole and possibly a zero caused by inductor dynamics, are pushed to high frequencies. To correctly model the high-frequency dynamics of DCM converters, one must account for the fact that the ac voltage across the inductor is not zero. Equation (11.12) is employed in Section 11.1 to greatly simplify the equations of the DCM averaged switch model. Although this model gives good restdts at low frequencies, it cannot accurately predict high frequency indtictor dynamics because it implies that the ac inductttr voltage is zero.

A more accurate approach is employed in this section. The subinterval length f/ is fotmd by averaging the inductorcurrent waveform ifj) of Fig. 11.3 [4-6]:

(11.64)

Solution for(V2(/) yields:

d2(t) =

-diO =

RXd){idit)).

(11.65)

Equation (11.65), together with Eqs. (11,3), (11,4), (11.7), and (11.10), constitutes a large-signal averaged inttdel in DCIVI that can be tised to investigate steady-state behavior, as well as low-frequency and high-frequency dynamics. Unfortunately, the model equations are more involved, and do not allow elimination of all converter voltages and currents in terms ofthe switch network average terminal waveforms.

Let us use this model to find predictions for the high-frequency pt>le caused by the inductor dynamics of DCM converters. Consider the btick-boost cttnverter of Fig. 11,2 having the DCM waveforms shown in Fig. 11.3, The average transistor voltage and the average diode current are selected as the switch network dependent variables. Substitution ofEq. (11.65) into Eq, (11.3) yields

, , и , , R,(r/){i (/))v(0). ,/(f)

ь(0),ч-(0)м,.-40(ИО) - - -J

(11.66)

The averaged switch voltage {Vf(f}}j. in Eq. (11,66) is a nonlinear function of the switch duty cycle, the average indtictor current, and the average input and otitput voltages:

(11.Й7)

A small-signal ac mttdel can be obtained by Taylor expansion ttfEq. (11.67), The small-signal ac component ofthe average switch voltage can be fotmd as:



А С and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

+ It

Fig. 11.22 A small-signal ac motiel of the DCM buck-buust converter.

С R

(И.6В)

where the small-signal model parameters k, k, r, and/, are computed as partial derivatives of Vi evaluated at the quiescent operating point. In particular,

Substitution of Eq. (11.65) into Eq. (11.10) yields

(11.64)

ШтгШт,-{,.(0). dit)

The small-signal ac component i of the average diode current can be found as:

(11.70)

(ll.7t)

where the small-signal model parameters j, h., and are computed as partial derivatives of evaluated at the qtiiescent ttperating point. Figure 11.22 shows the small-signal ac model of the buck-boost converter, where the transistor and the diode switch are replaced by the sources specified by Eqs, (11.68) and (11.71), respectively. It can be sht)wn that this model predicts essentially the same low-frequency dynamics as the model derived in Section 11.2.

To find the control-to-output transfer function, we set = 0. At high frequencies, the small-signal ac component of the capacitttr voltage is very small, v = Ik Therefore, the contribution of the dependent source kj/ can be neglected at high frequencies. Then, from the equivalent circuit model of Fig. 11.22, we have

iLif,+г1Г;,-1-у,(/ = 0 iU.ll)

Equation (1 1.72) can be solved for the control-to-inductor current transfer function at high frequencies:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 [ 144 ] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300