Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 [ 148 ] 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fib. 12.3 Inductor cutrcnt waveform t)f jl current-piogramnned convcrtet operating in tlie continuous conduction mode.


the artificial ramp are explained, using a simple first-order discrete-time analysis. Effects of the artificial ramp on controller noise susceptibility is also discussed.

Figure 12.3 illustrates a generic inductor current waveform of a switching converter operating ill the continuous conduction mode. The inductor cnrrciit changes with a slope during the first sub-interval, and a slope -m during the second subintcrvai. For the basic nonisolated converters, the slopes m, and - Ш, are given by

in I = - ,- - illj = -

Buck converter L

Boost converter Buck-boost converter

(12.1)

With knowledge of the slopes jHj and -m, we can dctcrniinc the general relationships between 1(0), t, (,.(7;), and dT.

During the first subinterval, the inductorcurrent l(() increases with slope Ш[,until reaches the control signal Hence,

(12,2)

Solution for the duty cycle d leads to

(12.3)

111 a similar manner, for the second subinterval we can write

(12,4)

In steady-state, ;(0) = г(Г,), d-D,ii}f - M and =Mj, Insertion of these relationships into Eq. (12.4) yields



Fig. 12.4 Effect of itihisl pejtur-batioti tJP) on inductor current waveform.

state


-m, .i-Perturbed wavefortn

{D + d]T DT.

0 = MDT,-MiiyT,

(12.6)

Steady-State Eq. (12.6) coincides with the requirement for steady-state volt-second balance on the inductor.

Consider now a small perturbation in ijiQ).

i,(O) = /, + i,(0)

(12.7)

7((, is a steady-state value of /(0), which satisfies Eqs. (12.4) and (12.5), while (, (<)) is a small perturbation such that

m\-\h.

(12.8)

It is desired to assess the stability of the current-programmed controller, by determining whether this small perturbation eventually decays to zero. To do so, let us solve for the perturbation after n switching periods, ti<iiiTJ), aitd detemiine whether ttinTJ), tends to zero for large n.

The steady-state and perturbed inductorcurrent waveforms are illustrated in Fig. 12.4. For clarity, the size ofthe inductor current perturbation 1 (0> is exaggerated. It is assumed that the converter operates near steady-state, such that the slopes rn and /Hj are essentially unchanged. Figure 12.4 is drawn for a positive Г(О); the quimtity dT is then negative. Since the slopes ofthe steady-state and perturbed waveforms are essentially equal over the interval (i < J < (D + t})T, the difference between the waveforms is equal to (,( forthis entire interval. Likewise, the difference between the two waveforms is a constant i(,TJ over the interval (D + d)T < r < Г, since both waveforms then have the slope ~ ffij, Note that tjiT) is a negative quantity, as sketched in Fig. 12.4. Hence, we can solve for liT) in terms of Г,.(0), by considering only theinterval {D + J)!] < t < ОТ, as illustrated in Fig. 12.5.

Fig, 12,5 Expattded view of the steady-state and perturbed inductor current waveforms, neur the peak afij:t}.


Steady-state waveform

Perturbed waveform



From Fig. 12.5, we can use tlie steady-state waveform to express г7(0) as the slope multiplied by the interval length - T. Hence,

(12.9)

Likewise, we can use the perturbed waveform to expiess t,/? ,) as the slope - ittj, multiplied by the interval length - ill;.

Elimination of the intermediate variable d from Eqs. (12.9) and (12.10) leads to

,(r,) = tV(0)

ffl; ft I

(12.10)

(12.11)

If the converter operating point is sufficiently close to the quiescent operating point, then ffVl given approximately by Eq. (12.6). Equation (12.11) then becomes

A similar analysis can be performed during the next switching period, to show that

r,(27,) = r (7,)--g]=, j-]

After switching periods, the perturbation becomes

.( T,) = ?,f(/i~ 1)7;,)

= ?,(0)

(12.12)

(12.13)

(12,14)

Note that, as ;/ tends to infinity, the perturbation tjiiT,) tends to zero provided that the characteristic value ~ DJD has magnitude less than one. Conversely, the perturbation irtT) becomes large in magnitude when the characteristic value a - -DID has magnitude greater than one:

0 when

< 1

when

> 1

(12.15)

Therefore, for stable operation of the current programmed controller, we need I a = D/D < 1, or

/J<0.5 (12.16)

As an example, consider the operation of the boost converter with the steady-state terininal voltages = 20 V, V = 50 V. Since V/V = l/D, the boost converter should operate with D = 0.6. We therefore expect the current programmed controller to be unstable. The characteristic value will be



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 [ 148 ] 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300