Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 [ 149 ] 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


О 7,

Fig. U.6 Unstable oscillation for D = 0.6.

(R17)

As given by Eq. (12.14), a perturbation in the inductorcurrent will increase by a factor of- 1.5 over every switching period. As illustrated in Fig. 12.6, the perturbation grows to - 1.5г(0) after oite switching period, to + 2.2S?j(0) after two switching peiiods, and to - 3.375Г;(0) after three switching peiitxls. For the particular initial conditions illustrated in Fig. 12.6, this growing oscillation saturates the current programmed controller after three switching periods. The transistor remains on for the entire duration of the fourth switching period. The inductor current and controller waveforms may eventually become oscillatory and periodic in nature, with period equal to an integral ntmiher of switching periods. Alternatively, the waveforms may become chaotic. In either event, the controller does not operate ns intended.

Figure 12.7 illustrates the inductorcurrent waveforms when the output voltage is decreased to V = 30 V. The boost converter then operates with D = 1/3, and the characteristic value becomes

(12.18)

Perturbations now decrease in magnitude by a factor of 0.5 over each switching period. A disturbance in the inductor current f}ecomes sirtail iit magnitude after a few switching periods.

The instability for D > 0.5 is a well-known problem of curreiu programmed control, which is not dependent on the converter topology. The controller can be rendered stable for ail duty cycles by addition of an artificial rainp to the sensed switch current waveform, as illustrated in Fig. 12.8. This arti-


0 T,

Fig, 12,7 A stable transient with D - 1/3.

37 .



Buck converter

.-.(0

Measure hit) switch currenl

Control input

Artificial ramp

S Q R

---

P- -

comparator

Latch

Current-programmed controller


Fig. 11.8 Stabilization of the current progranuued controller by Luldition of an artilicLul tamp to the measured switch current waveforar: (a) block diagrain, (b) artificial ramp waveform.

ficial ramp has the qualitative effect of reducing the gain of the inner switch-current-sensing discrete feedback loop. The artificial ramp has slope m as shown. The controller now switches the transistor off when

i (dT,) + i, [dT,)i,

(12.19)

where ( (f) is the artificial ramp waveform. Therefore, the transistor is switched off when the inductor current yf) is given by

t,.{,) = i,-t (Jr.)

(12.20)

Figure 12.9 illustrates the analoi; comparison of the inductor current waveform 1(0 with the quantitv



Fig, 12,9 Addition of artificial ramp: the transistor is now switched off wlien


We can again determine the stability of the current programmed controller by analyzing the change in a perturbation of the indnctor current waveform over a complete switching period. Figure 12.10 illustrates steady-state and perturbed inductor current waveforms, in the presence of the artificial ramp. Again, the inagnitude of the perturbation 1*(0) is exaggerated. The perturbed waveform is sketched fora positive value of/,(0); this causes d, and usually also to be negative. If the perturbed wave-

forms are sufficiently close to the quiescent operating point, then the slopes fflj and 1Щ are essentially unchanged, and the relationship between rj(0)and (ДТ)сап be determined solely by consideration ofthe interval (D 4 d)T < t < DT... The perturbations ((0) and ,.(7 ) are expressed in terms of the slopes fflj, ra, andm , and theinterval length-/jT as follows:

r,fO)=-T.(m,+m,)

(12.21)

Elimination of yields

?J/;) = --rfr,(m -tnj)

(12.22)

A similar analysis can be applied to the и* switching period, leading to

№) = fit(,!--l)7;)

!nizf!h\-t,

.(0)

= i,(U)a

(12.23)

(12.24)

The evolution of inducttir cunent perturbations are now determined by the characteristic value

Fig. 12.ie Steady-state and perturbed induclor current waveforms, in the presence of an artificial ramp. zo +

(i,-i.{0)

Steady-state wavefo rm~;!

Perturbed wavefarm



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 [ 149 ] 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300