Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 [ 151 ] 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

<b)


Fig. 12.13 ВиЛ-boost tonvcrter example: (a) power stage, (b) iiiduetor current waveform.

(12.31)

We now make the assunaption that the intluctor current \j{.<t) is identical to the programmeil control current This is valii] to the extent that the controller is stable, anil that the magnituiles of the inductor cunent ripple aud artificial ramp waveform are sufficiently smiill:

(12,32)

This approximation, in conjunction with the inductorcurrent equation of (12.31), can now be used to find the relationship between the control current ijs) and the duty cycle 3{s), as follows:

.!fj*,(.v) = D(!(i) -t- Dlis) + \V- Vy(s)

Solution for d{s) yields

r/CO =

jLi,(j)-DC,(-tJv(.r)

(12.33)

(12,34)

This small-signal expression describes how the current programmed controller varies the duty cycle, in response to a given control input variation \is)- It can be seen that d{s) depends not only on tj.s), but also on the converter output voltage and input voltage variations. Equation (12.34) can noW be substituted into the sectmd and third lines of Eq. (12.31), thereby eliminating d(s). One obtains




Node

С 5 я

Fljs. 12,14 Coiwitruction of CPM CCM buck-boosi converter equivalettt circuit; (a) ttiput port model, corresponding to Eq. (12.38); (b) output port model, corresponding to Oq. (12.37).

.cv(.)=..D-;.(.)-Mw/-->- ->- -

(12.35)

These equations can be simplified by collecting terms, and by use of the steady-state relationships

- DR DR >

Equation (12.35) then becomes

(12,36)

.vCv(.v) =

sLD DR

\\\} -

4s] -

(12.37)

(12.38)

These are the basic ac small-signal equations for the simplified frrst-order model of the current-programmed buck-boost converter. These equations can now be used to construct small-signal ac circuit triodeis that represent the behavior of the converter input and output ports. In Eq. (12.37), the quantity aCvis] is the output capacitor current. The ijis) term is represented in Fig. 12.14(b) by an independent



Fig. 12.15 Two-port equivatent circuit used lo tnodet the current-proEratntned CCM buck, boost, and buck-boost converters.

current source, while the ((i) term is represented by a dependent current source. v(s)tR is the current through the load resistor, and v(i)D/fl is the current through an effective ac resistor of value R/D.

Equation (12.38) describes the current i(s) drawn by the converter input port, out ofthe source Vjfis). The i(s) term is again represented in Fig. 12.14(a) by an iirdependent cunent source, and the v(.f) term is represented by a dependent current source. The quantity - vis)D/DR is modeled by an effective ac resistor having the negative value - DRID.

Figures 12.14(a) and (b) can now be combined into the smali-signal two-port mtxiel of Fig. 12.15. The current programmed buclt and boost converters can also be modeled by a two-port equivalent circuit, ofthe same form. Table 12.1 lists the model parameters for the basic buck, btrast, and buclt-boost converters.

The two-port equivalent circuit can now be solved, to find the convertertransfer fimctions and output impedance. The control-to-output transfer function is found by setting to zero. Solution for tlie output voltage then leads to the transfer function G(s):

G .(.0=

lis)

(12,39)

Substitution ofthe model parameters for the buck-boost converter yields

-Sk

1 +[>

(12,40)

Tlible 12,1 Current proramtned mode sinall-signal equivalent cirtuit parameters, simple inodel

Converter

Buck

Boost

Buck-boost

£ l +

sL Ш

sDL DR



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 [ 151 ] 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300