Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 [ 152 ] 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

It tan be seen that this transfer function contains only one pole; the pole due to the Inductorhas been lost. The dc gain is now direcdy dependent on the load resistance r. In addition, the transfer function contains a right half-plane zero whose corner frequency is unchanged from the duty-cycle-controlled case. In genera], introduction of current programming alters the transfer ftinction poles and dc gain, but not the zeroes.

The line-to-output transfer functinn frjW is found by setting the control input i,. to zero, and then solving for the output voitage. The result is

i,.-Ci

r,\\R\

Substitution of the parameters for the buck-boost converter leads to

1 + .- M +D

Again, the inductor pole is lost. The output impedance is

ZJ,s]r\{R\\± For the buck-boost converter, one obtains

(12.4])

(12.42)

(12.43)

(12,44)

12,2,2 Averaged Switch Modeiing

Additional physical insight into the properties of current programmed converters can be obtained by use of the averaged switch modeling approach developed in Section 7.4. Consider the buck converter of Fig. 12.16. We can define the terminal voltages and currents of the switch network as shown. When the buck converter operates in the continuous conduction mode, the switch network average terminal waveforms are related as follows;


R < vii)

\ SwUeh network

Fig. 12.16 Averaged switch modeling of a current-programmed convetter: CCM buck exanipie.



(12.45)

We again invoke the approximation in which the inductor current exactiy follows the control current. In terms ofthe switch network terminal current ij, we can therefore write

The duty cycle dit) can now \x eliminated from Eq. (12.45), as follows:

(,-,С0), = 40(<ДО) = щ(Цг)), This equation can he written in the alternative form

(12.46)

(12.47)

(12.48)

Equations (12.46) and (12.48) are the desired result, which describes the average terminal relations of the CCM current-programmed buck switch network. Equation (12.46) states that the average terminal current {iiff}. is equal to the control current i\{t)).j.. Equation (12.4S) states that the input port of the switch network ctmsumes average power (p(()) equal to the average power flowing out ofthe switch output port. The averaged equivalent circuit of Fig. 12.17 is obtained.

Figure 12.17 descrihies the behavior of the current programmed buck converter switch network, in a simple and straightforward manner. The switch network output port behaves as a current source of value The input port follows a power sink characteristic, drawing power from the source equal

to the power supplied by the current source. Properties of the power source and power sink elements are descriled in Chapters 11 and 18.

Similar arguments lead to the averaged switch models ofthe current programmed boost and buck-boost converters, illustrated in Fig. 12.18. In both cases, the switch network averaged terminal waveforms can be represented by a current source of value {1,.(.С))т> in conjunction with a dependent power source or power sink.

A small-signal ac model of the current-programmed buck converter ciui now be constructed by perturbation and linearization of the switch network averaged temiiiiai waveforms. Let

t- ;

i Averaged switch, network

Fig, 12.17 Averaged model of CPM buck convener.



Average/ wjteft network \


Iig. 12,ie Avei-aged models of CPM boost (a) and CPM buck-boost (b) converters, derived via averaged switch inodeling.

(.(0),]=V, + v,(i) (12,49)

(;2(0}, = /2 + .Vo (i,(0}, = /. + ?,(()

Perturbation and iitiearization of the (irCO)i-j current source of Fig. 12.17 simply leads to a cutrent source of value Perturbation of the power source characteristic, Eq. (12.48), leads to

(v, + o,(f))[/, +; i(/)) = + r,(r))( + f,(f)}

Upon equating the dc terms on both sides of this equation, we obtain

(12.50)

(12.SI)

The linear small-signal ac terms ofEq. (12.50) are



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 [ 152 ] 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300