Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 [ 156 ] 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

It can be verified that Et]s. (12.77) and (12.78) are equivident tti the trmsfer functittn.s derived in Section 12.2.

When an artificial ramp is present, then the gain is reduced to a finite value, The ctirrent-pro-grammed controller no longer perfectly regulates the inductorcurrent 4, and the terras on the right-hand side ofEq. (12.75) do not add to zero. In the extrerae case of a very large artificial ramp (large M and hence small F ), the current-programmed controller degenerates to duty-cycle control. The artificial ramp and analog comparator [)f Fig. 12.8 then function as a pulse-width modulator similar to Fig. 7.63, with small-signal gain F . For small F and for -* Q, * 0, the control-to-output transfer function (12.73) reduces to

lim G,.is)FJJ,As) .ГП.11Л , (12.79)

which coincides with conventional duty cycle control. Likewise, Eq. (12.74) reduces to

lim G,. ,. , (v) = 0,.

(12,80)

f>-i(l

which is the lirre-to-output transfer furrction for conventional duty cycle control.

12.3.4 Current-Programmed Transfer Functions of the CCM Buck Converter

The control-to-output transfer function fr ,/.) and line-to-output tran.sfer function C{s) of the CCM buck converter with duty cycle control are tabulated in Chapter 8, by analysis of the equivalent circuit model in Fig. 7.17(a). The results are:

where the denominator polynomial is

den(s)[+.4 + s-LC (12.ИЗ)

The inductorcurrent transfer functions C;,;(i) and G.C*) defined by Eqs. (12.68) and (12.69) are also found by solution of the equivalent circuit model in Fig. 7.17(a), with the following results:



(12.8S)

where den(s) к again given by Et]. (12.83).

With no artificial rainp and negligible ripple, the controi-to-output transfer function reduces to the ideal expression (12.77). Snbstitution of Eqs. (12.81) and (12.84) yields

(12.86)

Under the same conditions, the iine-to-output transfer function reduces to the ideal expression (12.78). Substitution of Eqs. (12.81) to (12.85) leads to

, . с; ()0.-,(.о-о.,()С (л)

.lim C., (.T) =-= 0

(t2.R7)

Equations (12.86) and (12.S7) coincide with the expressions derived in Section 12.2 forthe CCM buck converter.

For arbitrary F F and/-, the controi-to-output transfer function is given by Eq. (12.73). Substitution of Eqs. (12.81) to (12.85) into Eq. (12.73) yields

У 1

D denU)

. + F.

V 1 + sRC , ... DR iffH(Y) l -

D del,(s)

(12.RR)

Simplification leads to

(12,89)

dm.i)+{i+sRC) + F, t-\ Finally, the control-to-output transfer function can be written in the following normalized foim:

(12.90)

where

(12.91)

1 Г F]J FJ-V

(12.92)



PR RCK.V

In the above equations, the salient features C,.( tO., and are expressed as tlte duty-ratio-eontrol value, multiplied by a factor that accounts for the effects of current-programmed control.

It can be seen from Eq. (12.93) that current programming tends to reduce the Q-factor of the

poles. For large F, Q. varies as ; consequently, the poles become real and well-separated in magnitude. The Iow-2 approximation of Section S.l,7 then predicts that the low-frequency pole becomes

* DR* D

RCty

(12.94)

For large F and small F, this expression can be furdier approximated as

(12,9S)

which coincides with the low-frequency pole predicted by the simple model of Section 12,2. The low-Q approximatiou also predicts that the high-frequency pole becomes

, CF y 1 .

(12.96)

For large f this expression tan be further approximated as

-dl-dm:.

(12.97)

The high-frequency pole is typically predicted to lie near to or greater than the switching frequency It should be pointed out that the converter switching and modulator .sampling processes lead to discrete-time phenomena that affect the high-frequency behavior of the converter, and that are not predicted by the continuous-time averaged analysis employed here. Hence, the averaged model is valid only at frequencies sufficiently less than one-half of the .switching frequency.

For arbitrary F, F and F, the cunent-piogrammed line-to-output transfer function Cji.., (i) is given by Eq. (12.74). This equatitm is most easily evaluated by first finding the ideal transfer function, Eq. tl2.78), and then using tlte result to simplify Eq. 0274). In the case of the buck converter, Eq. (12.87) shows that thequantity (GGj- GjGj) is equal to zero. Hence, Eq. (12.74) becomes

(12.98)

Substitution of Eqs. (12.81) to (12.85) into Eq. (12.98) yields



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 [ 156 ] 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300