Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 [ 157 ] 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

-D f 1

den{s) ID rfen(j)

1 + R

V l±jRC. p У 1 DR denis) DdertU)

(12.99)

Simplification leads to

denU)[]..,RC]F ,F,

(12.1Ш)

Finally, ttie current-progiimimed line-to-tmtput transfer function can be written in the following nonnal-ized form:

! +7-

(12.101)

where

F-V FFV

2M,.

(12.102)

The quantities Q.and (it. are given by Eq.s. (12.92) and (12.9. 5).

Equation (12.102) shows how current programming reduces the dc gain ofthe buck converter line-to-output transfer functittn. For duty cycle control (f) ~* 0)> Go is equal to D. Nonzero values of F, reduce the numerator and increase the dentmiinattw ofEq. (12.102), \vhich tends to reduce G.,. We have already seen that, in the ideal case (Г , 0, F 0), becomes гею. Equarion (12.102)

reveals that nonideal current-programmed buck converters can also exhibit zero Gq, if the artificial ramp slope is chosen equal to 0.5A/j, The current programmed controller then prevents input line voltage variatitms from reaching the output. The mechanism that leads to this result is the effective feedforward of Vg, inherent in the current programmed controller via the Fv term in Eq. (12.Й6). It can be seen from Fig. 12.2Й that, when FFfiis) = GJ.s), then the feedforward path from through F induces variations in the tnitput V that exactly cancel the v-induced variations in the direct forward path of the ctmverter tlirough GCi). This cancellation occurs in the buck converter when jVf = O.SAfj.

12,3.5 Results for Basic Converters

The transfer functions ofthe basic buck, boost, and buck-boost converters \vith current-programmed control are summarized in Tables 12.3 to 12.5. Control-to-output and line-to-output transfer functions for both the simple model of Section 12.2 and the more accurate model derived in this sectitm are listed. For completeness, the transfer functions for duty cycle ctmtrol are included. In each case, the salient features are expressed as the corresponding quantity with duty cycle control, multiplied by a factor that accounts forcurrent-programined control.



Ciirrem Fnygraiimied Control

Tible 12.3 Summary of i-esults for the CPM buck Converter

Simple mode! V R

Duty cycle controlled guitis

More accurate model

c = z>

Jahk 13,4 Summary of results tor the CPM boost converter

Simple rrrode!

Duty cycle controlled gains

11 2

More accurate model

5k* (if

L. FV FF]

1 + ЯС

t-F f./ +

L СУ

F v1

1 -rj,v + Ht-



таЫе 12.s Summaiy of results for the CPM buck-boost oonveiter

Simple model

Duty cycle controlled gains

±

1 +s

КС \

K(l.fl)

{].£>) J

More accurate model

t 1 +

OCf= Off

vTtV Off

,/i/-l4(/)~iAM

The two poles of the line-to-output transferfunctions 0,..р, und control-to-output trunsfer functions G,ofull three converters typically exhibit low £i-fuctors in CPM. The iow-Q upproxiniution can be applied, as in Eqs. (12.94) to (12.97). to find the low-freqtiency pciie. The hne-to-output transfer functions of the boost and buck-boost converters exhibit Iwo poles and one zero, wilh substantial dc Eain,

12,3.ft Quantitative ElTetti of Current-Programmed Control on the Converter Transfer FunclJuiiS

The frequency responses of a CCM buck converter, operating with current-programmed control and with duty cycle control, are compaied in Appendix B. Section B.3.2. The btick converler of Fig. B.25 was simulated as described in Appendix B, and the resulting plots are reproduced here.

The magnitude and phase of the control-to-output transfer functions are illustrated in Fig. 12.27. It can be seen that, for duty cycle control, the transfer function G(s) exhibits a resonant two-pole response. The substantial damping introduced by current-programmed control leads to essentially a single-pole response in Ihe current-programmed conlrol-to-output transfer function J.). A second pole appears in the vicinity of КЮ ItHz, which is near the 2(Ю ItHz switching frequency. Because of this effective .iingie-pole response, it is relatively easy to design a controller that exhibits a weii-behaved response,



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 [ 157 ] 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300