Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 [ 158 ] 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

40 dB

IIG I!


-180*

to Hz

100 Шг

Fig. 12.27 Comparison of CPM contml wilh diUy-cjicle control, for die eontrol-lo-output fnequency resjxinse of the buck convener example.

lie,

vg I

20 dB

-20 dB -40 dB -60 dB -SOdB

-ICOdB

Duty cycle control d{t) = constant


Ctirrent programmed tnode vp) = constant

to Hz

100 Uz

1 kHz

10 kHz

100 kHz

Fig. 12.28 Comparison of CPM control with diriy-cycle comrol, foi tlie line-to-output freqttency response of the buck converter example.

having ample phase margin over a wide range of operating points. Proportional-plus-integral (Pfl controllers are commonly used in current-programmed regulators.

The line-to-output transfer functions of the same example are tompiued in Fig. ]2.2S. The line-to-output transfer function G(.t) for duty-cycle control is characterized by a dc asymptote approximately e(]u;i] to the duty cycle D ~ 0.676. Resonant poles occur at the comer frequency of the L-C filter. The line-to-output transfer function G,i.J,Si) with current-programmed control is .significantly reduced, and exhibits more than 30 dB of additional attenuation over the frequencies of interest. It should again be



20 dBQ

l!Z JI

OdBffl

-20 dun

Current programmed mode vJX) - constant

Duty cycle control d{t) = constant


10 Hz

100 Hz

i kHz

10 k№

100 kHz

Fif. 12.29 example.

Compaiisoii of CPM ccmtiol with duiy-cycle cuatiol, fur [lie outpul ijupedantc of the buck converter

noted that the transfer function trj, ,(1) in Fig. 12.2E cannot be predicted by the simple models of Section 12.2; the more accurate model of Section 12.3 must be employed.

The effect of current-programmed control on the converter output impedance is illustrated in Fig. 12.29. The output impedance plotted in the figure includes the load resistance of 10 S2. For duty-cycle control, the dc asymptote of the output impedance is dominated by the inductor winding resistance of 0.05 Q. The inductor becomes significant in the vicinity of 2ffl) Hz. Above the resonant frequency of the output filter, the output impedance is dominated by the output filter capacitor. For current-programmed control, the simple model of Section 12.2 predicts that the inductor branch ofthe circuit is driven by a current source; this effectively removes the influence ofthe inductor on the output impedance. The plot of Fig. 12.29 was generated using the more accurate model of this section; nonetheless, the output impedance is accurately predicted by the simple model. The dc asymptote is dominated by the load resistance, and the high-frequency asymptote follows the impedance of the output fiUer capacitor. It can be seen that current programming substantially increases the converteroutput impedance.

12.4 DISCONTINUOUS CONDUCTION MODE

Current-programmed converters operating in the discontinuous conduction mode can be described using the averaged switch modeling approaches of Sections 12.3 and 11.1. It is found in this section that the average transistor voltage and current follow a power sink characteristic, while the average ditide voltage and current obey a power source characteristic. Perturbation and linearization of these characteristics leads to a small-signal equivalent circuit that models CPM DCM converters. The basic DCM CPM buck, botwt, and buck-boost converters essentially exhibit singie-poie transfer functions: the second pole and the right half-plane zero appear at frequencies near to or greater than the switching frequency, owing to the small value ofL in DCM.

A DCM CPM buck-boost converter exatnple i.s analyzed here. However, Eqs. (12.103) to (12.120) are written in general form, and apply equally well to DCM CPM buck and boost Converters. The schematic of a buck-boost converter is illustrated in Fig. 12.30. The terminal waveforms of the switch network are defined as shown: and i{t) are the transistor waveforms, while i.j(/) and jj(() are



Switch network

Fig. 12.30 Cuireru-programmed DCM buck-boo$t converter example.


the diode waveform.s. Figirre 12.31 illustrates typical DCM waveforms, for current-programmed control with an artificial ramp having .slope - m,. The inductor current is zero at the beginning of each switching period. By .solution of the transistor conduction subinterval, the programmed current г can be related to the transistor duty cycle by:

= (tn,.

Solution for [J, leads to

(12.103)

(12.104)

The average transistor current is found by integrating the i,(t) waveform of Fig. 12.31 over one .switching period:

(12.105)

The total area / is equal to one-half of the peak current ij,, multiplied by the subinterval length dT, Hence,

(<,(rt),4t (r)J,(0 П2.Ю6)

Elimination of г, and d, to express the average transistor current as a function of (., leads to

(12.107)

Finally, Eq. (12.107) can be rearranged to ohtain the averaged switch network input port relationship:

(12.108)

1 +-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 [ 158 ] 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300