Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 [ 159 ] 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Thus, the average tiatisistor wavetbrins obey a power sink iji) characteristic. Wlien = 0, tlieii the average power (pil))j. is a function only of i 4, anti/j. The presence of the artificial tatnp causes (p(O)rj to additionally depend j on the converter voltages, via

The power sink characteristic can also be explained via inductor energy aiguinents. During the first subinterval, the inductor cunent increases fromO to l. In the process, the inductor stores the following energy:

(12.109) v(()

ТЪе energy W is transferred from the power input v. through the switch netw[)rk input port, to the inducttir, once per switching pericxl. This energy transfer process accounts tor the power flow

(12,110) i,(t)

The switch network input port, that is, the transistor ter-tninals, can therefore be tnodeled by a power sink ele-tneut, as in Fig. 12.32.

The average switch network output port current, that is, the average diode current, is

(12.111)

By inspection of Fig. 12.31, the iirea is given by

/ ~ L

L

Area !7i У

-Т.-

The duty cycle d. is detennined by the time required for the inductor current to return to zen), during the second

subintervai. By arguments similar to those used to derive 1 Waveforms, CPM DCM buck-boost Eq. (11.12), the duty cycle rfj can be found as follows: example.

dp) = dft)

(12,113)

Substitution of Eqs. (12.113), (12.112), and (12.110) into Eq. (12.111) yields

(12.114)

The output port ofthe averaged switch network is therefore described by the relationship



Fig. 12.31 CPM DCM bucit-bciost converter mode!, derived via averaged switch modeling.

(12,115)

In the avetaged mtidel, the diode can be replaced by a ptiwer source of vaine{p(0)7ii equal to the ptiwer apparently consumed at the switch network input port. During the second subinterval, the inductor releases all of its stored energy through the diode, to the converter output. This resuits in an average power flow ofvalue {p(t})j.

A CPM DCM buck-boost averaged mode! is therefore as given in Fig. 12.32. In this model, the transistor is simply replaced by a power sink ofvalue {p(0)r< while the diode is replaced by a power source also ofvalue (р(1))т-

The steady-state equivalent circuit model of the CPM DCM buck-boost converter is obtained by letting the inductor and capacitor tend to short- and tipen-circuits, respectively. The mtxiel of Fig. !2.33 is [obtained. The steady-state output voltage Fcan now be determined by equating the dc load power to the converter average power (p(f))j,. For a resistive load, one obtains

(12.116)

where the steady state value of (/)(f))j. is given by

(12.117)

and where is the steady-state value of the control input i/Г). Solution for Vyieids the following resu!t

Fig. 1233 Steady-state model of die CPM DCM buck-boost converter




Fig. 12J4 Averaged models Q

of egrrent-programmed TXM converters: (a) buck, (b) boost.

ТПЛГ

ТПЛГ

{12,11S)

for the case of a resistive load.

Averaged mtxiels ofthe DCM CPM buck, boost, and other converters can be found in a similar manner. In each case, the average trimsistor wavefonns iue shown to follow a ptjwer sinlt chiiracterisdc, while the average ditxle wavefortns follow a power source chiiracteristic. The resulting equivalent circuits of the CPM DCM buclt and boost converters iire illustrated in Fig. 12.34. In each case, the average power is giveti by

Table 12.6 Steady-state DCM eurrelt-pюgгammed characteristics of basic converters

Converter

Stability range when m = 0

Buck

Boost

I m-1 T

0<D< 1

Buck-4xx>st

Depends on load characteristic:

2(M-11

0£d< 1



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 [ 159 ] 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300