Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 [ 160 ] 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig, 12.35 Small-signal models of DCM CPM converters, derived hy (icrturbuliciEi and linearization of Figs 12.32 and 12.34: (a) buck, (h) boost, (c) huck-boost.

.Li:m

i + -i

(12.119)

with mdefined as in Eq. (!2.!).

Steady-state characteristics of the DCM CPM buck, boost, and buck-boost converters are summarized in Table 12.6. In each case, the dc load power is Pj, = V/ and P is given by Eq. (12.117). The conditions for operation of a current programmed converter in the discontinuous conduction mode can be expressed as follows:

(12.120)

where / is the dc load current. The critical load current at the CCM-DCM boundary, I. is expressed as a function of and the voltage conversion ratioM = VfV in Table 12.6.

In the discontinuous conduction mode, the inductor current is zero at the beginning and end of



Aablle ил Current programmed DCM smill-sigiifil tiquivillenl eiitoil piinimeters; inpiil p[>it

Convener

Buck

Boost

i + :

m,

2-m , 2mjmi m I

Buck-raost

Tftblc 12.Й CuiTt;n; prfjriiiTUtietl DCM small-sijniil ctuivuleiU 4;ircuU paiuueieifi: output puit

Converter

Buck

r\\-m}

(2-M)

Boost

M- i

Buck-boost

each switching pciind. As a resuit, the current programmed controller does not exhibit the type of instability described in Section 12. L The current programmed controllers of DCM boost and buck-boost converters are stable for ail duty cycles with no artificial ramp. However, the CPM DCM buck converter exhibits a different type of low-frequency instability when M > 2/3 and = 0, that arises because the dc output characteristic is nonlinear and can exhibit two equilibrium points when the converter drives a resistive itjad. The stability range can be extended tt) 0 < D < I by addition of an artificiid riunp have slope ш > 0.086 mj, or by addition of output voltngc feedback.

Smaii-signai models of DCM CPM converters cnn be derived by perturbation and lincnrization of the avcmgcd models of Figs. 12.32 and 12.34. The results ate given in Fig. 12.35. Parameters of the small-signal models are listed in Tables 12.7 and 12.S.

The CPM DCM small-signal models of Fig. 12.35 arc quite .similar to the respective small-signal models of DCM duty-ratio controlled converters illustrated in Figs. 11.15 and 11.17. The .sole differences are the parameter expressions of Tables 12.7 and 12.S. Transfer functions can be determined in a



C - Rf

Pig, 13.36 Simplified small-signal mtirte! obtained by letiing /- hecome zern in Fig. 12.35 (a), fb), or (c).

similar manner. In particuJar, a simple approximate way to determine the low-irequeney small-signal transfer functions of the CPM DCM buek, boost, and buck-boost converters is to simply let the inductance L tend to zero in the equivalent circuits of Fig. 12.35. This appnjximation isjustified for fretjuen-cies sufficiently less than the converter switching frequency, because in the discontinuous conduction mode the value of L is small, and hence the pole and any RHP zero associated with L occur at frequencies near to or greater than the switching frequency. For all three converters, the equivalent circuit of Fig. 12.36 is obtained.

Figure 12.36 predicts that the control-to-output transferfunction ( (-ч) is

<!2.12!)

with

(Ri\r,)C

The line-to-output transfer function is predicted to be

G,.,(.v)= -

with

(12.122)

(1 = .12(111-3)

If desired, more accurate expressions which account for inductor dynamics can be derived by solution of the models of Р1ц. 12.35.

US SUMMARY OF KEY POINTS

In current-programmed cunirol, the peak switch currenl ijj) follows the control input jjf)- This widely used contrt)! scheme has the iidvtinlage t)f a simpler control-ttj-output transfer ftinclitjn. The line-U)-output transfer functions of current-programmed buck converters are also reduced.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 [ 160 ] 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300