Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 [ 164 ] 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

This page intentionally left blank



Basic Magnetics Theory

Magnetics are an integral part of every switching converter. Often, the design of the magnetic devices cannot be isolated from the converter design. The power electronics engineer tntist not only model and design the converter, but must model and design the magnetics as well. Mtxieling and design of magnetics for switching converters is the topic of Part III of this book.

In this chapter, basic tmgnetics theory is reviewed, including magnetic circuits, inductor modeling, and transformer modeling [1-5]. Loss mechanisms in magnetic devices are described. Winding eddy currents and the proximity effect, a significant loss mechanism in high-current high-frequency windings, are explained in detail [6-11]. Inductor design is introduced in Chapter 14, and transformer design is covered in Chapter 15.

13,1 REVIEW OF BASIC MACJINETICS 13.1.1 Basic Relationships

The basic magnetic quantities are illustrated in Fig. 13.1. Also illustrated are the analogous, and perhaps more fatniiiar, electrical quantities. The magrturomorive force or scalar potential, between two points x and Xj is given by the integral of the magnetic fteld H along a path connecting the points:

fpn-dl (13.1)

where dt is a vector length element pointing in the direction of the path. The dot product yields the com-



Basic Maguesics Theory

Magnetic quantities

Electrical quantities

Length e

Magnetic field И

- Length e-

Electnc field E

MMF -.iJ= Hi

Voltage

Total flux Ф Flux density В


Surface S wilh агеаЛ

Total current / Current density /


Surface 5 with area

Fig, 13.1 Comparison of magnetic field И, MMP Ф, flux and (lux density B, wiih the aiialiious electrical quaii-titiesi E, V; /, tind J.

ponent of H in the direction of the path. If the magnetic field is of uniform strength H passing through an element of length t as illustrated, then Eq. (1 L1) reduces to

03.2)

This is analogous to the electric field of uniform strength £, which induces a voltage V = £f between two points separated by distance L

Figure 13.1 also illustrates a total magnetic flux Ф passing through a surface S having area Л.. The total flux Фis equal to the integral of the normal coraponeut of the flux density В over the surface

(13.3)

where dA is a vector area element having direction normal to the surface. For a uniform flux density of magnitude В as illustrated, the integral reduces to

Ф = аА,.

(13.4)

Flux density В is analogous to the electrical current density / and flux Ф is analogous to the elechic current /. If a uniform current density of magnitude / pas.ses through a surface of area then the total current is / = JA.

Faradays law lelate.s the voltage induced in a winding to the total flux passing dirough the iute-rior of the winding. Figure 13.2 illustrates flux Ф(() passing through the interior of a loop of wire. The loop encloses cross-sectional area /1. According to Faradays law, Ihe flux induces a voltage v(t) in the wire, given by

K0 =

(13,5)

where the polarities of v(f) and Ф(() are defined according to the right-hand rule, as in Fig. 13.2. For a



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 [ 164 ] 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300