Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 [ 168 ] 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

The MMF generators are additive, becanse the ciittents i and pass iti the same direttion through the core window. Solution oi Fig. 13.14 yields

Ф.Л = 1(, +1гг.

This expression could also be obtained by substitution of = Фй? into Eq. (13.35).

(13.36)

13.2.1 The Ideal Transformer

In the ideal transformer, the core reluctance approaches zero. The causes the core MMF= Фй to also approach zero. Equation (13.35) then becomes

0- n,i, + tifi.,

(13.37)

Also, by Faradays law, we have

Note that Ф is the same in both equations above: the same total flttx links both windings. Elimination of Ф leads to

V, V,

III ll

(13,39)

Equations (13.37) and (13.39) are the equations of the ideal transformer:

= and л,(1-1-(,п = 0

(13,40)

(13,38)

I 2

Ideal

Fig, 13.15 Ideal transformer .symbol.

The ideal transformer symbol of Fig. 13.15 is defined by Eq. (13.40).

13.2.2 The Magnetizing Inductance

For the actual case in which the core reluctance ifi is nonzero, we have

Ф.Л = /1]+ with 1! = !

(13.41)

Elimination of Ф yields

- i d

~ Mdt

(13.42)




Hg. 13,16 Transformei model including miigneliiitig inductance. This equarion is of tlie form

where

(13.43)

l.u = i -I- Il

113,44)

are the magnetizing inductance and magneiizing ctirrent, referred to the primary winding. An equivalent circuit is illustrated in Fig. 13.16.

Figure 13.16 coincides with the transformer model introduced in Chapter 6. The magnetizing inductance models the magnetization ofthe core material. It is a real, physical inductor, which exhibits sattiration and hysteresis. All physical transformers must contain a magnetizing inductance. Forexample, suppose that we disconnect the sectmdary winding. We are then left with a single winding on a magnetic core-an indtictor. Indeed, the equivalent circuit of Fig. 13.16 predicts this behavior, via the magnetizing inductance. The magnetizing current causes the ratio of the winding currents to differ from the turns ratio.

The transformer saturates when the core flux density B(t) exceeds the saturation fltix density When the transformer saturates, the magnetizing current i,(f) becomes large, the impedance ofthe magnetizing indtictance becomes small, and the transformer windings become short circuits. It should be noted that large winding currents i,(() and ((O do not necessaiiiy cause saturation: if these currents obey Eq. (13.37), then the magnetizing current is zero and there is no net magnetization of the core. Rather, saturation of a transformer is a function of the applied volt-seconds. The magnetizing cutrent is given by

Alternatively, Eq. (13.45) can be expressed in terras of the core flux density B(t) as

v,(/)rff

(13,45)

(13.46)

The flux density and magnetizing current will become large enough to saturate the core when the applied volt-seconds Aiis too large, where Л, is defined for a periodic ac voltage waveform as



(13,47)

Ttie limits are chosen such that the integral is taken over the positive portion of the applied periodic voltage waveform.

To fix a saturating transforiner, the flux density should be decreased by increasing the number of turns, or by increasing the core cross-sectional areaAj. Adding an air gap has no effect on saturation of conventional transformers, since it does not modify Eq. (13.46). An air gap simply makes the tronsformer less idctd, by decreasing Lf and increasing ((0 without changing B{i). Saturation mechanisms in tims-formers differ from those of inductors, because trfinsformer sfiturfition is determined by the Eipplied winding voltage waveform.s, rather than the applied winding currents.

13.2.3 LEfi](ag Inductances

In practice, there is some flux which links one winding but not the other, by leaking into the air or by some other mechanism. As illustrated in Fig. 13.17, this flux leads to leakage indiictance, i.e., additional effective inductances that are in series with die windings, A topologically equivalent structure is illustrated in Fig. 13.17(b), in which the leakage fluxes and arc shown exphcitly as separate inductors.

-Ф..

2(f)

v,(0

Fig, 13.17 Leakage flux in a two-winding transformer: (a) transformer geometry, (b) an equivalent systBni.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 [ 168 ] 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300