Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 [ 176 ] 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


Fig. 13,40 Filter inductor employed in a CCM buck converter: (ii) circuit schematic, (b] inductor current waveform.

Core reluctance


NJ Air gap X rel

reluctance

-JW-

Fig. 13,41 Filter inductor: (a) structure, (b) magnetic circuit model.

The core magnetic field strength MJl) is related to the winding current /(r) according to

where f. is the magnetic path length of the core. Since H(t) is proportional to i(t), HJj) can he expressed as a large dc component Яд and a .small superimposed ac ripple ДЯ., wdiere

nf

ЛЫ - дА/ c

(13.102)

A sketch of B(f) vs. Нф for this application is given in Fig. 13.41 This device operates with the minor B-H loop illustrated. The size of the minor loop, and hence the core loss, depends on the magnitude of the inductor current ripple Д/. The copper loss depends on the rms inductor current ripple, essentially



Minor B-H loop, filter induclor

Fig, UAl Filter intluctor minor В-Я loop.


B-H loop, large excitation

equal to the dc component 7. Typically, the core loss cati be ignored, and the design is driven by the copper loss. The maximum flux density is limited by satmation of the core. Proximity losses are negligible. Although a high-trequeiicy ferrite material can be employed in this application, other materials having higher core losses and greater saturation tlux density lead to a physically smaller device. Design of a filter inductor in which the maximnm flnx density is a specified value is considered in the next chapter.

13.5.2 AC Inductor

An ac itiductor employed in a resonant ctmverter is illustrated iti Fig. 13.43. In this application, the high-frequency current variations are large. In consequence, the B{f)-H{t) bop illustrated in Fig. 13.44 is large. Core loss and proximity loss ate usually significant in this application. The maximum tlux density

Fig, 13.43 Ac inductor, resoriant convener example: (a) resonant tank circuit, (b) inductor current waveform.


B-H loop, for AS Operalicn as ac induclor

Fig, 13,44 Operatiorial В-И loop of an ac inductor




is limited by eore loss rather than saturation. Both tore kiss and copper k)ss must be accounted for in the design of this element, and the peak ac flux density ДВ is a design variable that is typically chosen to minimize the total loss. A high-frequency material having low core loss, such as ferrite, is normally employed. Design of magnetics such as this, in which the ac flux density is a design variable that is cho-.sen in a optimal manner, is considered in Chapter 15.

13.5.3 Transformer

Figure 13.45 illustrates a conventional transformer employed in a switching converter. Magnetization of the core is modeled hy the magnetizing inductance L. The magnetizing current i(() is related to the core magnetic field H(r) iccording to Amperes law

(13,103)

However, iQ) is not a direct function of the winding currents /[(() or /(f). Rather, the magnetizing current is dependent on the applied winding voltage waveform Vj(0. Specifically, the maximum ac Ilux density is directly proportional to the applied volt-seconds . A typical B-H loop for this application is illustrated in Fig. 13.46.

..........................

Area X,

Fig, 13j45 Conventional transfomier; (a) equivalent circuit, (b) lypical primary voltage and magnetizing current waveforms.

Fig. 13fi Operational B-H loop of a conventional transformer.


B-H loop, for operation as converiiiCfnal

Iransformer

- Core B-H loop



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 [ 176 ] 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300