Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 [ 183 ] 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

I4.i Miiltiple-Windiii Manelics Design via itie KMelkod 547

The low-frequency copper loss P in winding 7 depends on the dc resistance Л. of winding j, as follows:

P..ii]Pt (i -)

The resistance of winding / is

(14,25)

Avij

where p is the wire resistivity, £y is the length of the wire used for winding/, and Ащ is the ctoss-sectionai area ofthe wire used for winding /. These quantities can he expressed as

ljHj(MLT) (14.26)

A.j = 4f (14,27)

where {MLT) is the winding raean-length-per-turn, and /f, is the winding fill factor. Suhstitution of these expressions into Eq. (14.25) leads to

The copper loss of winding / is therefore

The total copper loss ofthe к windings i.s

(14.30)

It is desired to choose the such that the total copper loss P j, is minimized. Let us consider what happens when we vary one of the as, say (Xj, between 0and 1.

When a, =0, then we allocate zero area to winding 1. In consequence, the resistance of winding 1 tends to infinity. The topper loss of winding 1 also tends to infinity. On the other hand, the other windings are given maximum area, and hence their copper losses can be reduced. Nonetheless, the total copper loss tends to infinity.

When a, = l,then we allocate all ofthe window area to winding 1, and none to the other windings. Hence, the resistance of winding 1, as well as its low-frequency copper loss, are minimized. But the copper losses ofthe remaining windings tend to infinity.

As illustrated in Fig. 14.8, there must be an optimum value of [ that lies between these two extremes, where the total copper loss is minimized. Let us cotnpute the optimum values of Ci, ctj,ftj using the method of Lagrange tnultipliers. It is desired to tninitnize Eq. (14.30), subject to the cotistraint of Eq. (14.23). Hence, we define the function



Copper


Fig. 14.S Variation of copper losses with a[.

1 a,

04.3!)

where

(14,32)

is the constraint that must etjiiai zero, and is the Lagrange multiplier. The optimum point is the solution of the system of equations

tfotj

3/(a aj,--,a )

dec.

a/(a,.(j;.--.r(.,)

(14.33)

The solution is

p(Mi,T)f.

(14.34)

(14.35)

This is the optimal choice for the as, and theresulting minimum valueof P .

According to Eq. (14,22), the winding voltages are proportional to the turns ratios. Hence, we can expiess the a-S in the alternate form



(14.36)

by multiplying and dividing Eq. (14.35) by tlie quantity V /fi ,. It i.4 irrelevant whether rms or peak volt-age.4 are used. Equation (14.36) is the desired result. Il .states that the window area should be allocated to the various windings in proportion lo their apparent powers. The numerator of Eq. (14.36) is the apparent power of winding m, equal lo the product of the rms current and the voltage. The denominator is the sum of the apparent powers of all windings.

As an exaraple. consider the PWM full-bridge transforraer having a center-tapped secondaty. as illustrated in Fig. 14.9. This can be viewed as a three-win ding transformer, having a single primary-side winding of turns, and two secondary-side windings, each of n, turns. The winding current waveforms !j(f), iit), and 1з(() are iilnstrated in Fig. 14.10. Tlieir rms values are

(14.37)

(14,38)

Substitution of these expressions into Eq. (14.35) yields

- I

.tt7t V £}-

(14.39)

(14.40)

If the design is to be optimized at the operating point D - 0.15, then one obtains

a, = 0396 2 = 0,302 a, = 0,302

(14.41)

So appToxiraateiy 40% of the window area should be allocated to the priraary winding, and 30% should


Fig, 14,9 PWM full-bridge transformer example.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 [ 183 ] 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300