Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 [ 187 ] 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

We tan now determine the necessary core size. Evaluation ofEq. (14.52) yields

(l.724. 10-Q-cm)[l.07- 10-h)[i.77A)[i.5 a) (o.25T)*(1.5W)(0.3

= 0.049 cm

(14.76)

The smallest EE core listed in Appendix D that satisfies this inequality is the EE30, which has K = 0.0857 cm. The dimensions ot this cote are

A, 1.09 cin =

IV, 0.476 cm

MLT 6.6 cm

L, b.n cm

(14.77)

The air gap length is chosen according to Eq. (14.53):

[ап- 10-H/m](l,07- 10-h](i,5A) fo.25T)fl.09 cm}

0.44 mm

(14.78)

The number of winding 1 turns is chosen according to Eq. (14.54), as follows:

(l.07.10-h](i,5A] (0,2ST)[l.O9cm2) = .58.7 turns

(14.79)

Since an integral number of turns is requited, we round off this value to

(14.80)

To obtain the desired turns ratio, fij should be chosen as follows:

= (0 15)59 = 8,81

We asain round this value off, to



(14,82)

The fractions of the window area allocated to windings 1 and 2 are selected in accordance with Eq. (14.56):

/ 0.796 A = = 7 = 0.45

(1.77 j h ., (59J{l,77A

(14.83)

= 0.55

The wire gauges should therefore be

= 1.09 10 cm= - u.se #28 AWG

A <2 = 8.88- I0 cm2 -use#19AWG

(14.84)

The above American Wire Gauges are selected using the wire gauge table given at the end of Appendix D.

The above design does not accotmt for core ioss or copper ioss caused by the proximity effect. Let us compute the core loss for this design. Figiue Fig. 14.14 contains a sketch of the B-H кюр for this design. The tlux density B(f) can be expressed as a dc component (determined by the dc value of the magnetizing eitrrent Ij), plus an aC variation of peak amplitude AS that is determined by the current ripple Дг\(. The maximum value of 5(() is labeled В,; this value is determined by the sum of the dc component and the ac ripple component. The core material saturates when the apphed Bit) exceeds hence, to avoid saturation, B should be less than The core loss is determined by the amplitude of the ac variations in S(/) i.e., by Afi,

The ac component AB is determined using Faradays law, as follows. Solution of Faradays law for the derivative of B{t) ieads to

dt ПЛ

(14.85)

As illustrated in Fig. 14.15, the voltage applied during the first subinterval is VjJ,t) = V . This causes the

Fig. 14.14 B-H loop for the flyback transformer design example.


HJit)

Minor B-H loop, CCMfiyback eximple

B-H loop, lairge excittttion



Fig. 14.15 Variation of flux density Bit), flybatlt transformer example.


flux density to increase with siope

(14.86)

Over the first subintervai 0 < / < DTj., the flux density B(t) elianges by the net amount 2ДВ. This tiet change is equal to the slope given by Eq. (14.86), tnultipiied by the interval length fiT,:

л И,-у

Upon solving for ДД and expressing in cm, we obtain

ДД = - 10

(14,87)

(14.86)

For the flyback transformer exaraple, the peak ac flux density is found to be

10-*

(20QV}(0.4](6.67>t. Лд= ----

2[59)[l,09cm) = 0.041 T

(14.89)

To determine the core loss, we next exatnine the data provided by the manufacturer for the given core material. A typical plot of core loss is illustrated in Fig. 14.16. For the values of ДВ and switching frequency ofthe flyback transformer design, this plot indicates that 0.04 W will be lost in every cm of the core material. Of course, this value neglects the effects of harmonics on core loss. The total core loss Pj-j, will therefore tie equal to this loss density, miiitipiied by the volume ofthe core:

/>j., = [0.04W/cra3)(A,f )

= (0,04 W/cm)( 1.09 cm=)(5.77 cm) = 0.25 W

(14,90)

This core loss is less than the copper loss of 1.5 W, and neglecting the core k)ss is often warranted in designs that operate in the continuous conduction mode and that employ ferrite core tnateriais.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 [ 187 ] 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300