Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 [ 190 ] 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

(15.6)

is the sum of the rms winding eurrents, referred to winding 1. Use of Eq, (15.4) to eliminate n, from Eq. (15.5) leads to

4Jf,.

jMLT)

(15.7)

The right-hand side of Eq. (15.7) is grouped into three tenns. The first group eontains speeifieations, while the second group is a function of the core geometry. The last tertn is a ftinction of AS, to be chosen to optitnize the design. It can be seen that copper loss varies as the inverse sqtiare of ЛЯ; increasing UB redtices Р,.

The increased copper loss due to the proximity effect is not explicitly accounted for in this design procedure. In practice, the proximity loss must be estimated after the core and winding geotne-tries are known. However, the increased ac resistance due to proximity loss can be accounted for in the design procedure. The effective valtie of the wire resistivity p is increased by a factor eqtial to the estimated ratio aJiii When the core geoinetry is known, the engineer can attempt to inipletnent the windings such that the estimated RaJdc is obtained. Several design iterations tnay be needed.

IS.1.4 Tutal power loss vs. ДВ

The total power loss f is found by adding Eqs. (15.1) and (15.7): The dependence of fj, and цОп iS is sketched in Fig. 15.3.

(15.B)


Optimum AB ДА

Hg. 15,3 Dependence of copper kiss, cure loss, and total loss on peak ac flux density.



IS.1.5 Optimum Flux Density

Let us now choose the value of ДВ that minimizes Ec[. (15.8). At the optimum ДВ, weeaii write

Mm d(M} dm)

Note that the optimum does not necessarily occur where P = P. Rather, it occurs where

dP..

rf(Afl) (/(ifl)

The derivatives of the core and copper losses with respect to ДЙ are given by

dihB)

4. = (l/:jAB)i-U,f,

(15.У)

(15,10)

(15.11)

(iS)

(15.12)

Substitution of Eqs. (15.11) and (15.12) into Eq. (15.10). and solution for AB, leads to the optimum flux density

plili, щт) ±

(15.13)

The resulting tutal power loss is found by substitution ofEq. (15.13) into (15.1), (15.S), and (15.9). Simplification ofthe resulting expression leads to

4/: W,Al This expression cait be regrouped, as follows:

(15.14)

ад- m]

(iWLr)£5f4

(15.15)

The terms on the left side ofEq. (15.15) depend on the core geometry, while the terms on the right side depend on specifications regarding the application (p, /, Я K, Р ,) and the desired core materiid [Kj, K-The left side ofEq. (15.15) can be defined as the core geometrical constant Kf:



S70 Transfonner Design

2 *\2

(15.16)

Hence, to design a transformer, the right side of Eq. (15.15) is evaluated. A core is selected whose K exceeds this value:

/f J> (15.17)

The quantity K is similar to the geometrical ctmstant u.sed in the previous chapter to de.4ign magnetics when core loss is negligible. is a measure of the magnetic size of a core, for applications in which core loss is significant. Unfortunately, K depends on % and hence the choice of core material affects the value of K-,. However, the P of гао.ч1 high-frequency ferrite material.s lies in the narrow range 2.6 to 2.8, and Кф varies by no more than ± 5% over this range. Appendix D lists the vaiues of Kj for various standard ferrite cores, fur the value P = 2.7.

Once a core has been selected, then the valties of A W f and MITare known. The peak ac ilux density ДВ can then be evaluated using Eq. (15.13), and the primary turns can be found using Eq. (15.4). The number of turns for the remaining windings can be computed using the desired turns ratios. The various window area allocations iue found using Eq, (14.35), The wire sizes for the various windings can then be computed as discu.ssed in the previous chapter,

fi.Wfpj (1518)

where Лу- is the wire area for winding j.

15.2 A STEP-BY-STEP TRANSFORMER DESIGN PROCEDURE

The procedure developed in the previous sections is summarized below. As in the filter inductor design procedure of the previou.4 chapter, this simple transformer design procedure should be regarded as a ffrst-pas.4 approach. Numerous issues have been neglected, including detailed insulation requirements, conductor eddy current losse.s, temperature rise, roundoff of number of turns, etc.

The following quantities are specified, using the units noted:

Wireeffecdve resisdvity p (il-cm)

Total rms winding currents, referred ш primary I - -y I

Desired turns ratios u/h, ij/Up etc.

v,(t)dt

Applied primary volt-seconds (V-sec)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 [ 190 ] 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300