Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

15J Examples

IDDA

IJV 13 a

15 V

Fig. 15.8 Muliiple-output full-bridge isoLiied buck converter example.

Area

- = VDT, 0

- V.

Fig. 15.9 Transforiner wavefonns, full-bridge convener example,

--jv+ -isv

i:o-5/jv

. 1

caused by diode forward voltage drops, tme finds that the desired transformer tuins ratios fli.n.riy are 110:5:15. A ferrite EE consisting of Magnefics, Inc. P-mateiiai is to be used in this exiimpie; at 75 It Hz, this material is described by the foiiowiiig parameters: = 7,6 W/rcm 3 = 2,6. A fill factor of K = 0.25 is assumed in this isolated multiple-output application. Total power loss of P, - 4 W, or appi-oxiinateiy 0.5% of the lo;id power, is alitjwed. Copper wire, having a resistivity of fl = 1.724 10 * Si-4;m, is to be used.

The applied primary voit-seconds are



к, = D-!\V = Ш.75)(б.б7 psec )(L60 V) = 800 V- usee The primary rms cirrreut is

The 5 V secondary whidhigs carry nns tiirrent

/D - 5.7 A

/j = i/5vl + 7:> = 66.1A

The 15 V secondary windings carry rms current

The totaJ nns winding current, referred to the ptiniary, is

= 14.4 A

The core size is evaluated using Eq. (15.19):

, (1.724-10-(8(1(1- lf-)( 14,4)(7.6)1

4(0.25)(4)( *

= 0.00937

(15.35)

(15.36)

(15.37)

(15.38)

(15,39)

(15.40)

The EE core data of Appendix D lists the EE40 core with A: = 0.0118 for P = 2.7, Evaluation of Eq. (15.16) shows that = 0,010B for this core, when P = 2.6. In any event, EE40 is the smallest standard EE core size having A < 0,00937. The peak ac flux density is found by evaluation ofEq. (15.20), using the geometrical data for the EE40 core:

AS =

s (l.724 1Q-)(800.10-)(14.4) (S.5)

2(0.25)

(1.1)(1.27)(7.7) (2,б)(7:б)

(15.41)

= 023 Tesla

This flux density is less than the saturation flux density of approximately 0.35 Tesla. The primary turns are determined by evaluation ofEq. (15.21):

4 (800.10 2(U.23)(1.27) = 13.7 turns

(15,42)

The secondary turns are fouud by evaluation of Eq. (15.22). It is desired that the transformer have a 110:5:15 turns ratio, and hence



;i2 = =0.62tJms flS.43)

Пз=-!?!, = 1.87 turns Ц5Л4)

In practice, we might select Mj - 22, = 1, and = 3. This would lead to a reduced with reduced core loss and increased copper loss. Since theresulting iff is suboptimal, the total power loss will be increased. According to Et], (15.3), the pealt ac flux density for the EE40 core will be

The resulting core and copper loss can be computed using Et]s. (15.1) and (15.7):

/V = O-6H0-lt3) (l.27)(7.7) = {).47 W (15.4f.)

(1.724.0-°)(800.](Г)-(14.4) ] ,

4(0.25) (l,l)(l.27) (0.143)- (l-5.47)

= 5.4W

Hence, the total power loss wojld be

r = Ff + P. :).9W (15-48)

Since this is 50% greater than the design goiil of 4 W, it is necessaiy to increase the core size. The next larger EE core is the EE50 core,having of 0.0284. The optimum ac tlux density for this core, given by Eq. (15.3), is AS = 0.14 T; operation at this flux density would require = 12 and would lead to a total power loss of 2.3 W. With ll = 22, calculations similar to Eqs. (15.45) to (15.48) lead to a peak tlux density of АП = 0.08 T. The resulting power losses would then be Pj-, = 0.23 W, P = 3,89 W, P, = 4,12W,

With the EE50 core and = 22, the traction of the available window area allocated to the primary winding is given by Eq. (15.23) as

The fraction ofthe available window area allocated to each half of the 5 V secondary winding should be The fraction ofthe available window area allocated to each half ofthe 15 V secondary winding should be The primary wire area A,i, 5 V secondary wire area А,,з, and 15 V secondary wire areaA, are then given



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300