Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 [ 202 ] 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Table 16.1 lEC 1000-3-2 Harmonic current limits, class Л

Odd harmonics

Even harmonics

Harmonic number

Maximum cunent

Harmonic tiumber

Maximum current

2.30 A

1.08 A

1.14A

0.43 A

0.77 A

0.30 A

0.40 A

8<n<40

0.23 A-{8/n)

0.33 A

0.21 A

15<л <39

0.15A-(15/n)

16.6.2 IEEE/ANSI Standard 519

In 1993, the IEEE published a revised draft standard limiting the amplitudes of current harmonics, IEEE Guide fov Harmonic Control mid Reaclive Compensalioii of Sialic Power Converters. The harmonic limits are based on Ihe ratio of the fundamental component of the load current /; to the short circuit current at the point of common coupling (PCC) at the utility I. Stricter limits are imposed on large loads than on small loads. The limits are similar in magnitude to lEC 1000, and cover high voltage loads (of much higher power) not addressed by lEC 10(Ю. Enforcement of this standard is presently up to the local utility company.

The (xkl harnronic limits for general distribution systems at voltages of 120 V to 69 kV are listed in Table 16.2. The limits for even harmonics are 25% of the odd harmonic limits. Limits for general distribution systems at 69.001 kV to 161 kV are 50% of the values listed in Table 16.2. DC current components and half-wave rectifiers are not allowed.

It is the responsibility of the power consumer to meet these current harmonic standards. Standard lEEE-519 also specifies maximum allowable voltage harmonics, listed in Table 16.3. It is the responsibility of the utility, or power supplier, to meet these limits. Both total harmonic distortion and maximum individual harmonic magnitudes are limited.

Table 16.2 IEEE-519 Maxitnunt odd hartnonic current limits for general distribution systems, 120 V to 69 kV

n< 11

USn<17

17Sn<23

235n<35

33 in

<20

4.0%

2.0%

1.5%

0.6%

0.3%

5.0%

20-50

7.0%

3.5%

2.5%

1.0%

0.5%

8.0%

50-100

10.0%

4.5%

4.0%

1.5%

0.7%

12.0%

100-1000

12.0%

5.5%

5.0%

2.0%

1.0%

15.0%

> 1000

15.0%

7.0%

6.0%

2.5%

1.4%

20.0%



liible 16.3 lEEE-S 19 Voltage distortion limits

Bits voltage at PCC

Itidividunl haimonlcs

69 kV and lower

3.0%

5.0%

69.001 kV to 161 kV

1.5%

2.5%

Above 161 kV

1.0%

1.5%

BiBLIOfiKAPHY [1]

J. Arrillaga, D. Bradley, and P. Bodger, Power System Harnwnicx, New York: John Wiley & Sons, 1985.

[2] R. Smity and R. Stratford, Tower System Harmonics Effects from Adjustable-Speed Drives, IEEE Jramactions on htdiistrc Applications, Vol. IA-20, No. 4, pp. 912-411, July/August I9S4.

[3] A. Emanuel, Powers in Nonsinusoidal Situations-A Review of Definitions and Physical Meaning, IEEE Transactions on Power Delivery, Vol. 5, No. 3, pp. 1377-1389, July 1990.

[4] N. Mohan, T. UNDELAND, and W. ROBBINS, Power Electronics: Converters, Applications, and Design,

Second edition. New York: John Wiley & Sons, 1995.

[5] J. kassakian, M. SCHLECHT, and g. VERGE5E, Principles of Power Electronics. Massachusetts: Addison-Wesley, 1991.

[6] R. Gretsch, Harmonic Distortion ofthe Mains Voltage by Switched-Mode Power Supplies-Assessment of the Future Development and Possible Mitigation Measures, European Power Electronics Conference, Ш9 Record, pp. 1255-1260

[7] ШС 10003-2, First Edition, Commission Elecltotechnique Internationale, Geneva, 1995.

Problems 16.1

Passive rectifier circuit. In the passive rectifier circuit of Fig. 16.13, Lis very large, such that the inductor cuixent is essentially dc. All components are ideal.

230 Vrms 30 Hz


Fig. 16.13 Passlverectifiercircuitof Problem 16.1

(a) Delermine the dc output voltage, current, anJ power.



Power and Harmonics in Nottsimsoidal Systetns

(b) Sketch the ac line cunent waveform J (t) anJ the rectifier outptit vollage waveform Vfi(t).

(c) Determine the ac line current rms magnitutle, fundamentai rms magnitude, and third harmonic rms magnitude. Does this rectifier network conform to the IEC-1000 harmonic current limits?

(d) Determine the power factor, measured at surfaces and S.

The three-phase rectifier of Fig. 16.14 is connected to a balanced 60 Hz Зоас 480 V (rms, line-line) sinusoidal source as shown. All elements are ideal. The inductance L is large, such that the current /(t) is essentially constant, wilh negligible 360 Hz ripple.

BaUmctd

480 V

-JTfSiri-

T f ?

Fig. 16,14 Three-phase rectifier cittuit of IrobltMTi 16.2

(a) Sketch the waveform v{f)

(b) Determine the dc output voltage V,

(e) Sketch the line current waveforms / (0. tfjO), and i(().

(d) Find the Fourier series of ( (f)

(e) Find the distortion factor, displacement factor, power factor, and line current THD.

Harmonic pollution ptdice. In the network of Fig. 16.15, voltage harmonics are observed al the indicated surface. The object of this problem is to decide whether to blame the source or the load for the observed harmonic polluliim. Either the source element or the load element contains a nonhnearity that generates harmonics, while die other element is linear.

Source

Load

Surface S

Fig. 16.15 ,Siitgle-phasc power system of Problems 16.3 to 16.5

(a) Consider first the case where the load is a passive linear impedance Zjis). and hence its phase lies in the range - 90° < ZZj[j(u) < + 90 for aliposiUve to. The source generates harmonics. Express the average power P in the form

where P, is lhe tiveriige power iQinsmilled U) lhe l(j;id by hiirmonit: питЬег п. What tin you ndy Liboiil ihe pokirlti-ен of the Js



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 [ 202 ] 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300