Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 [ 206 ] 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

tig. 17,8 Ac curreiu waveform tot the case when inductor L is Jargo. The phase is drawn with respect to tlie zero crossing of the line-to-neutral voltage vJt).

tao-

360*

ficiendy large, as well as when the filter elements L and Care removed entirely.

In the limit, when L is very large, then the current is essentially constant. The current in phase a, iJt), is then as shown in Fig. 17.S. It can be shown that the Fourier series for this waveform is

л= l.i.T.li

)sin(nce()

(17.6)

which is similar to the spectrum of the square wave of the single-phase case, but with the triplen harmonics missing. The THD of this waveform is 31%, and the distortion factor is ,1/7t = 95,5%. As in the case of the square wave, the amplitude of the odd nontriplen ft harmonic is (l/ ) tunes the fundamental amplitude. So this waveform contains 20% fifth harmonic, 14% .seventh harmonic, 9% eleventh harmonic, etc. It is interesting that, in comparison with the square-wave single-phase са.че, the missing 60° in the three-phase case improves the THD and power factor, by removing the triplen harmonics.

With a less-than-infinite value of inductance, the output ripple causes the ac line currents to be rounded, as in the typical waveform of Fig. 17.9. This wavefonn has a 31.9% THD, with a distortion factor that is ntit much different .from the waveform of Fig. 17.8.

THD = 31.9%


Fig. 17.9 Cctntinuiius conducliun mode ac line-neutral voltages and phase a eun-ent. for a moderate value of inductance.

17.2.2 Dl.scontinu( us C( nducti( n M( de

If the inductance is further reduced, then the three-phase rectifier enters the discontinuous conduction mode. The rectifier then begins to peak-detect, and the current waveforms become narrow pulses of high amplitude, occurring near the peaks of the line-line voltages. The phase a line current i,(f) contains two positive and two negative pulses, at the positive and negative peaks of the line-line voltages vjfj) and Vj;). As in the single-phase case, the total harmonic distortion becomes quite large in this са.че, and the



17.3 Phase Control 617

THD =99.3%


Fig. 17.10 Discontinuous conduction mode ac Jitie-neutral voltages and phase a curretit.

power factor can be significantly degraded.

A typical waveform is given in Fig. 17.10. Tills waveform has a THD of 99.3%, and a distortion factor of 71%. This would be considered unacceptable in high-power applications, except perhaps at light load.

17.3 PHASE CONTROL

There are a wide variety of schemes for ctmtroihng the dc output of a 3o rectifier using thyristors [1,2]. The most common one is shown in Fig. 17.11, in which the six diodes of Fig. 17.7 ;ire replaced by silicon controlled rectifiers (SCRs). Typical waveforms are given in Fig. 17.12, for large dc-side fiiter inductance.

If Qi were an uncontrolled diode, it would conduct whenever the iine-to-line voltage vj or v, is the largest in magnitude of the six line-line v[)ltages v, v., v, f and v.,. This [)ccurs for 120° of each cycle, beginning at the point where vj, = v.j Ln Fig. 17.12, this occurs at (Of = 60°. The output voltage ofthe controlled rectifier is controlled by delaying the firing of by an angle a, such that Qi begins conducting at (Of = 60° -I- (X. This has the effect of reducing the dc output voltage.

There can be no dc component of voltage iicross inductor L Hence, in steady-state, the dc component of the rectifier output voltage Vj,(f) must equal the dc iuad vuitage V. But Vjt) is periodic, with period equal to six times the ac line period (or 60°). So the dc component of (г) can be found by Fourier analysis, and is equal to the average value of Vj((0. Over one 60° interval, for example (60° + a) < Wf < (120 + a), Уд() follows the line-line voltage vj(f) = W, sin (Oil + 30 ).The average is therefore

kci Jfc?: ЖОз

лплг\


dc load

Fig, 17.11 Basic controlled 3f) bridge rectifier circuit, with dc-sldc L-C filter.



= v sin m

Fig. 17.12 Waveforms for the controlled rectifier of Fig, 17.11, wilh large dc lilter inductance.


Upper iliyristor:

Lower thyristor

(17,7)

where V, i.s the rras iine-to-line voltage. This equation is plotted in Fig. 17,13. It can be seen that, if it is necessary to reduce the dc output voitage to values close to zero, then the delay angle a raust be

Fig. 17.13 Variation of the dc output voltage V with delay angle rt, for the phase-controlled circtiit of Fig, 17.11,

0.5 -

0 --

-0.5 -

-1 -

-1.5

Rectification

Inversion

--!-1-

-1-1-1

150 180

a, degrees



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 [ 206 ] 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300