Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 [ 209 ] 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


Fig, n.22 Construction of approxiniate frequency response for a harmonic trap filter that attenuates the fifth, seventh, and eleventh harmonics: (a) impedance asymptotes, (b) transfer function asymptotes.

ply the resonant frequency ofthe shunt impedance Z or

r mi 1 2n 2nL,C,

(17.15)



]n addition, care must be exercised regarding the parallel resonance, Since no three-phase system is exactly balanced, small amounts of third harmonic currents always occur These currents usually have negligible effect; however, the parallel resonance of the harmonic trap filter can increase their magnitudes significantly. Even worse, the Q-factor of the parallel resonance, Q is greater than the series-resonance Q-factor Q,

The filter circuit of Fig. 17.20 is simple enough that an exact analysis can be performed easily. The exact transfer function is

(17.16)

where

2л 2k/l;c;

>l>

2 2ж./11;7Цс;

R, V с,

The resonant zeroes do indeed appear at the series resonant frequency, while the parallel resonance and its associated resonant poles appear at frequency/, determined by the series combination of L, and L,.

To attenuate several harmonics-for example, the fifth, seventh, and eleventh-series resonant networks can be tuned to provide resonant zeroes at each. A circuit is given in Fig. 17.22(a), with the impedance asymptotes of Fig, 17.22(b). The resulting approximate H{s) \\ is given in Fig. 17.22(c). It can be seen that, associated with each series resonance is a parallel resonance. Each parallel restinant frequency should tie chosen such that it is not significiuitly excited by harmonics present in the network.

The filter transfer function can be given high-frequency single-pole roUoff by addition of a bypass resistor Л;, as illustrated in Fig. 17.23(a). Typical impedance and transferfunction asymptotes for this network are constructed in Fig. 17.24. The bypass resistor allows some additional attenuation of the higher-order harmonics, without need for series resonant traps tuned to each harmonic. The network of Fig. 17.23(a) is sometimes called a high pass network, because it allows high-frequency currents to flow through the shunt branch. But it causes the overall filter transfer function H{s) to reject high frequencies. A simple harmonic trap filter that contains series resonances that can be tuned to the fifth and

Fig. 17,23 Addition ol bypass resistor R , to a scries resonant network, to obtain a higti-frcqucncy rolloff charactcrisUe: (a) basic circuit, (b) addition of ЫссУпй capacitor to reduce power coiisump-tiori at the fimdanicntai frisquency.




- 20 dB/deeade

big, 17.24 Conttiuctioii of approximatu frequccity гс.чроше for a harmonic trap hlitM eoiitaiiiing bypass resistor: (a) impetliinte tisymptoics, {bJ Ininsfci fimclinn asymptotes.

seventh btirmcnics, v/ith a single-pole rolloff to attenuate higher-order harmonics such as the eleventh and thirteenth, is illustrated in Fig. 17.25.

Power loss ill the bypass resistor can be an issue: since ff, is not part of the resonant network, significant fundamental (50 Hz or йО Hz) currents can flow through R;,,. The power l[>ss can be reduced by addition of blocking capacitor C as illustrated in Fig. 17.23(b). This capacitor is cho.sen to increase the impedance of the Р-С leg at the fundamental frequency, but have negligible effect at the higher-

l4g. 17.25 A haimonic trap filter containing scries resonances tuned to the fifth atid seventh harmonics, and higfi-frcquency tolloff characteristic.

i Fifih-karmonic]\ Seventh-harmonic trap trap with high-

frequency rolloff



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 [ 209 ] 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300