Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 [ 214 ] 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

energy. The defining equalitms [)IThe LFR are:

mm Pin

(1B.5)

(18.6} (18.7)

When the LFR ouipul pon is connected to a resistive load of value R. the dc output rms voltages and currents V j and iue related to the ac input rms voltages andciirrents ,mj and lac.rms follows:

(18.8)

(18,9)

The properties of the power source and loss-tree resistor network are discussed in Chapter 11. Regardless of the specific converterimplementatlon, any single-phase rectifier having near-ideal properties can be modeled tising the LFR two-port model.

18.2

REALIZATION OF A NEAR-IDEAL RECTIFIER

Feedback can be employed to cause a converter that exhibits controlled dc transformer characteristics to obey the LFR equations. In the single-phase case, the simplest and least expensive approach employs a full-wave diode rectifier network, cascaded by a dc-dc converter, as in Fig. 18.3. The dc-dc converter is represented by an ideal dc transformer, as discussed in Chapter 3. A control network vturies the duty cycle, as necessary to cause the converter input current i(t) to be proportional to the applied input volt-

dc-dc convener


Fig. 18.3 Synthesis of an ideal rectifier hy varying the duty cycle of a PWM dc-dc converter,



age v,() as 111 Eq. (1S. 1). The effective tums ratio t>f the Ideal transformer then varies with time. Ideal waveforms are illustrated in Fig. iK.4. If the applied inpul voltage vO is sinusoidal.

vJj) = Vy, sin (tut) llien tlie reclilled voltage is

v (/) = V sin (Ы1)\

(ts.io) vW

(is.ii)

It is desired thtil the converter outpul voltage be a constant dc value !(/) = V. The converler conversion ratio /дДО must therefore be

Af(rf(0) =

v(0 V VfU) U I sin (01/) I

(18.12)

This expression neglects the converter dynamics. As can be seen from Fig. 18.4, the conlroller must cause the conversion ratio to vary between infinity (at the ac line voltage zero crossings) and some minimum value M; (al llie peaks of the ac line voltage waveform). A, ( is given by

.....-t

(Ш.П)

Any ctmverler Itjptdogy whose ideal conversitm ratio can i)e varied between these limits can be einplt)yed in this application.

To the extent that the dc-dc ctmverter is idetil (i.e., if the lo.sses can be neglected and there is negligible low-frequency energy storage), the 1п,ч1ап1апеои,ч input and ouiput powers are equal. Hence, the oulpul current i(i) in Fig. 1H.3 is given by

(18,14)

M(f)



Substitution OfEq. (IS.l i) into Eq. (IS. 14) then leads lo р, Waveforms ofthe metifier system of

Fig. 18.3.

i(()= y-sin(tuf)

(18.15)

2VK.

{2ШГ))

Heni;e, the converteroutput current contains a dc component and a component at die second harmonic of the ac line frequency. One of the functions of capacitor С in Fig. 18.3 is to filter oul Ihe second harmonic comptmenl of ((f), so lhai the load current (flowing through resistor /f)is essentially equal to the dc component



(18. i6)

where 7 is the period of the appiied ae line voltage. The average power is

(18.17)

The above equations are generally valid for PWM converters used as single-phase low-harmonic rectifiers.

18 J.1 CCM Boost Converter

A system based on fhe CCM boost converter is illustrated in Fig. 18.5 [1,5,fi]. Ideally, the boost converter can produce any conversion ratio between one and infinity. Hence, the boost converter is capable of producing the M{d{T)) given by Eq. (18.12), provided that VS V.Further, the boost converter can produce very low TIID, with better transistor utilization than other approaches.

If die boost converter operates in continuous conduction raode, and if the inductor is stnall enough diat its influence on the low-frequency cotnponents of the converter waveforms is negligible, dien the duty ratio should follow Midit)) = 1/(1 ~ d{t)). This implies that the duty ratio should follow the fimction

(18.18)

This expression is true only in the continuous conduction mode. The boost converter operates in the continuous conduction mode provided that the inductor current ripple

(18,19)

Boost convener

Fig. 18.S Rectifier syHlem baK&d Ш1 the bo().4t conveiter.

С dz. ко < R




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 [ 214 ] 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300