Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 [ 217 ] 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Boost converler


v,(0

Multiplier j

ТПЛР

С dp v{o < Д

G,{s}

Compensator

Controller

Fig, 18,11 Average current control of a boost converter, to obtain a low-harnionit rectifier.

Tbe average current controller causes tlte sensed current ij,t) to Follow tlte reference waveforin vj,t).

To cause the input current to be proportional to the input voltage, the reference voltage vjif) is derived from the sensed input voltage waveform, as in Fig. 18.11. The current reference signal vt) is derived from the sensed input voltage v(0, and hence has a sinusoidal waveshape. Hence, the average current controller causes the average input current iU) to be proportional to the input voltage v/O- The multiplier illtistrated in Fig. 18.11 allows adjtistnicnt ofthe con.stnnt of proportionality, so that the magnitude of the emulated resistance can be controlled via a control signal гоигтК- Let us assnmc that the multipher terminal equations are

Fig, 18,1(1 Average current

control of the input current in a boost converter.

Current sense circuit


Compensator

Current reference



Ideal rectifier (LFR)

С Ф Ш-, < R


Pig. 18.12 Model оГ the system of Fig. [8.5, based iin (tie loss-free resistor inotlel of Fig, I K.l<cJ, whieh predieis the low-fiequeiicy system waveforms. This inodel a.ssumes lhal the feedback looji of Fig. I Й,5 operates ideally.

(18.44)

Then the emulated iresistance is

*.v , (i)

(18.45)

v (f)

Here, Eqs. (18.44) and (18.42) have been used toelitiiinate f, and i. Substitution ofEq. (18.43) leads to the result

(18.46)

Hence, if the feedback loop is well designed, then the system of Fig. 18.11 can be represented by the LFR mode! as in Fig. 18.12. The average current controller scheme of Fig. 18.11 and the model of Fig. 18.12 are independent of the dc-dc converter topology, and can be applied to systems containing CClVl boost, buck-boost, Uik, SEPIC, and other topologies.

Average power flow and the output voltage are regulated by variation of the emulated resistance R, in average current control as well as in most other schemes, This is usually accomplished by use of a multiplier in the input voltage sensing path, as shown in Fig. 18.13. This control loop continually adjusts R, to maintain balance of the average rectifier power = .гтУг hs load power -fjj. such that the following relation is obeyed:

(18.47)

Average current control works quite well. lt.s only disadvantages are the need to sense the average input currenl, rather than the transistor current, and the need for a multiplier in the controller circuit.

Most average current control implementations include provisions for feedforward of the input voltage amplitude. This allows disturbances in the ac input voitage amplitude to be canceled out by the




vohage reference

W<0

Fig, 18,13 Avcrilge current contrtil incorporating a multiplier for regulation cif the ouiput voltuge.

conltolier, sucli llml tlie dc outptit voltage is unallected.

Combination of Eqs. (18.44), (18.46), and (18.47), and solution lor vU) leads to

7..1,(/)Я,

(18.48)

This equation shows how the reference voltage should be varied to maintain a given rectifier average power throtighput 7,. Apparently, it is necessary to divide by die square of the mis inptit voltage amplitude. A controller lhat implements Ec], (18.48) is illtistrated in Fig. 18.14. The multiplier block of Fig. 18.13 has been generalized to perform the lunclioii kxyh}. It is somewhat cttmphcated lo coraptile the rms value of a genertti ac waveform; however, the ac input voltage vt) nomiaily is sinusoidal with negligible harmonics. Hence, the peak value oivjif) i.s directiy proportional to its rms value, and we can use the peak valtie in place ol . So the controller ol Fig. 1K. 14 produces the reference voltage

(18.49)

Comparison of Eqs. (18.48) and (18.49) leads lo the concitision that

2ft,

(1Я.50)

So the average power throughput is directiy controlled by ,д, (/), and is independent of the inpul voltage v(().

Feedlorwiud can cause the rectifier dc otitptit voltage to be less sensitive to viuiations in the ac



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 [ 217 ] 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300