Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 [ 220 ] 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

EMlfitter

Boost converter


ContrvilcT

Fig. 18.20 A typical impicincnialitin of critical conduction inwle control.

interval of length / .ТЬе resulting inductor current wavefortn will have a peak value that depends directly on the applied input voltage, and whose average value is one-half of its peak. With either control approach, the converter naturally exhibits loss-free-resistor or ideal rectifier behavior. The emulated resistance is

(18.62)

This scheme has the advantage of small inductor size and low-cost control ICs. Disadvantages are increased peak currents, variable switching frequency, and the need for additional input EMI filtering.

A typical critical conduction mode controller is illustrated in Fig. 18.20. A zero-current detector senses when the inductorcurrent i.s zero; this is typically accomplished by monitoring the voltage acros.s the inductor. The zero-current detector sets a latch, turning on the transistor and initiating the switching period. The transistor current is also monitored, and is compared to a sinusoidal reference vf) that is proportional to the applied input voltage v{t). When the sensed cttrrent is equal to the reference, the latch is reset and the transistor is turned off.

Since the switching frequency can vary, possibly over a wide range, it is important to carefully design the converter power stage. For a given power Л the required transistoron-time (, ,can be found by combining Eqs. (18,17) and (IS.62), and solving for/ :

, 4LP

(18.63)

Application of the principle of volt-second balance to inductor L of Fig. 18.20 leads to the following equation:

.-v]t. -(

(IR.M)

Hence, the transistor off-time is given by



The switching period V, is equal to

t -t

>fti,r

SubsliUilion oi Etjs. (18.63) and (18.65) into Eq. (18.66) yields

r .ALP L

vit)

(13.65)

(18.56)

(18.67)

The following expression for switching frequency is found by substitution of Eq. (18.11) into Eq. (18.67):

l--sin( )

The maximum switching frequency occurs when sill((i)f) equals zero:

(18.68)

m.x.

The minimum sw itching frequency occurs at the peak ofthe sine wave:

(18.69)

(1S.70)

Equations (18.69) and (18.70) can be used to select the value ofthe inductance L and the output voltage V, so that the switching frequency varies over an acceptable range.

18.3.4 NonJintar Carritr Control

The nonlinear-carrier controller (NLC) is capable of attaining input resistor emulation in boost and other converters that operate in the continuous conduction mode. Implementation ofthe controller is quite simple, with no need for sensing ofthe input voltage or input current. There is also no need for a cunrent loop error amplifier. The boost nonlinear-carrier charge controller is inherently stable and is free from the stability probietns that require ttddition of an artificial ramp in ciiiTent programmed controllers.

A CCM boost rectifier system with nonlinear-carrier charge control is illustrated in Fig. 18.21, and waveforms are given in Fig. 18.22. The reasoning behind this approach is as follows, it is desirable lo conlrol ihe transistor switch current /,.(/), This pulsating current is much easier to sense than the continuous converter input current-a simple current transformer can be used, as in Fig. 18.2]. Further, it is desirable to control the integral of this current, or the charge, for two retisons: (1) integration of the waveform leads to improved noise immunity, and (2) the integral of the waveform is directly related lo its average value.



Boost convener


- v,(0 + -e -

Ij/n jj Comparator

Nonlinear carrier generator

(0 < R

Latch

R 0 S О

0 T,

Nonlinear-carrier charge cotitroller Fig. 18.21 Nonlinear-cunier tliarge control i)f u boost conveiter.

Fig. 1Й.22 TranKJstor current l(i), paraholit; carrier vultage v (/), and ititcgrator vtiltago Vj(t) ivaveforms for the NLC-coiiti-oHed boost rectifier of Fig. 18.21.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 [ 220 ] 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300