Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 [ 224 ] 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


Fig. 18,3U Kemovul of coiupoiienls of v(i) at the harmonics of the ac Une freqjcticy, by averaging over one-half ol the ac title period, T.

The output p[)wei is cotnpiised of a constant term v\ , and a term that varies at the secend har-

monic of the ac line Iteqtiency. ТЬе.че two terms are explicitly identified in Fig. 18.29(b).

The second-harmonic variation in {p{t))j- leads lo time-varying system equations, and slow variations in v. , ;() lead lo an output voltage spectrum containing components not only at the frequencies present in 1 , Дг), but also at the even harmonics of the ac line frequency and Iheir sidebands, as well as at the .switching frequency and its harmonics iind sidebands. It is desired to tnodel only the h)w-Irequeticy components excited by slow variations in fo f((). the load, and the ac line voltage amplitude

line period

,j j. The even harmonics of lhe ac line frequency can be removed by averaging over one-half of the ac

7. 1 27t л

(18.94)

Hence, we average over the switching period to remove the switching harmonics, and then average again over one-half of the ac line period T, lo remove the even harmonics of the ac line frequency. The resulting model is valid for frequencies sufficienlly less than the ac line frequency 0). Averaging of the rectifier output voltage is illustrated in Fig. 18.Э0: averaging over Tj reinove.4 the ac line frequency harmonics, leaving the underlying low-frequency variations. By averaging the model of Fig. 18.29(b) over Tjj, we obtain the model of Fig. 18.29(c). This step removes the second-harmonic variation in lhe power source.

The equivalent ciicuit of Fig. 18.29(c) is time-inviuiant, but nonlinear. We can now perturb and linearize as usual, lo construct a small-signal ac model lhal de.scribes how slow variations in v,. i(t), snas rectifier output waveforms. Let us assume that the averaged output vollage

(v(())j., rectifier averaged output current (iit)}, tins line voltage amplitude v, j, and control voltage lJ j,j, ,j(f), can be represented as quiescent values plus sinall slow variations:

(v(f)),=KO(0

(18.95)

with



V -i I Щ1) I

(18,96}

In the averaged model of Fig. 18.29(e), {fl))f,i& given by

(18,97)

This equation resembles DCM buck-boost Eq. (11.45), and lineariiaiion proceeds in a similar manner. Expansion ol Eq. (18.97) in a ihree-dimensional Taylor series aboul ihe quiesceni operating point, and elimination of higher-order nonlinear terms, leads to

(1S.58)

where

4 v . V, v .,.

(18,99)

df V,

-.1г V

(18,100)

(18.101)

A small-signal equivalent circuit based un Eq. (18.98) is given in Fig. 18.29(d). Expressions for the parameters jj, jj, and for several conlruilers are listed in Table 1H. 1. This model is valid Ifn- the conditions ofEq. (18.96), with the additional asstimption that the output voltage ripple is sufliciently small. Figure 18.29(d> is useful only for determining the various ac transfer functions; no information regarding dc conditions can be inferred. The ac resistance is derived from the slope olthe average value olthe power sotirce ouiput characteristic, evaluated at the quiescent operating point. The other coefficients, and g, are also derived from the slopes of the same characteristic, taken with respect to v,j, ,(f) ;ind v and evaluated al the quiescent operating point. The resistance R is the incremental resistance ofthe load, evaluated at the quiescent operating point. In the boost converter with hysteretic control, the transistor on-time ton replaces v.jj ,; as the control inpul; likewise, the iransistor duty cycle d is laken as the



ЪЫе 18.1 Small-signal model parameters for several types of rectilier contiul schemes

Controller type

Average cnrrent control with feedforward. Fig. 18.14

Cunent-programmed control, lf Fig. 18.16

fOrtlineaг-carтier charge control

Of boost rectifier, Fig. 18.21 VV,

Boos: with critical cotiduciion mode 2/

control. Fig. 18.20 vv;;;;;;

DCM buck-boost, flyback, SEPIC, 2P

or Cuk convertert V V.

vv:.

2f VD

control inpul to the DCM buck-boost, Ilyback, SEPIC, and Cuk converters. Harmonics are ignored for the ctirrent-programmed and NLC controllers; the expressions given in Table 18.1 assume that the converter operates in CCM with negligible harmonics. The control-to-outputtransferfunclionis

ад

(18.102)

The line-to-otitput transfer function is

(18.103)

Thus, the small-signal transfer functions of lhe high quality recliliercontain a single pole, ascribable to the outpui lilter capacitor operating in conjunction with the incremental load resistance Д and Tj, the effective output resistance of the power source. Although this model is based on the ideal rectifier, its fonn is similar to that of the dc-dc DCM buck-boo.st converter ac model of Chapter 11. This is natural, because the DCM btick-boost converter is itself a nattiral loss-free resistor. The major difference is that the rms valtie of the ac input vollage musl be used, and lhat the second harmonic components of f*2>J2< and §2 must additionally be removed via averaging. Nonetheless, the equivalent circuit and ac transfer functions are of similar form.

When the rectifier drives a regulated dc-dc converler as in Fig. 18.25, llien the dc-dc converter presents a constant power load to the rectifier, as illustraled in Fig. 18.26. In equilibrittm, tlie rectifier and dc-dc ctmverter operate with the siune average power / , and lhe same dc voltage V. The incremental resistance R of the constant power load is negative, and is given by

R = -

(18.104)

which is equal in magnitude but opposite in polarity to the rectifier incremental output resistance

all conlroliers except the NLC controller. Tlte parallel combination рЦЛ then tends to an open circuit,

and the control-to-output and line-to-otitput transfer Itinclions become



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 [ 224 ] 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300