Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 [ 225 ] 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

4s) h

i5, , j(i; sC

(18,105)

(18.106)

In the ca.se of the NLC eonlroller, the parallel eombinalion /-jll/? beconies equal to Г2/2, and Eqs. (18.102) and (18.103) continue lo apply.

18.5 RMS VALUES OF RECTIFIER WAVEFORMS

To correclly specify the power stage elemenls of a near-ideal rectifier, il is necessary to compute Ihe root-mean-square values of their currents. A typical wavefomi such as the transistor current of the boost converter (Fig. 18.31) is pulse-width modulated, with botlt the duty cycle and the peak amplitude varying with the ac input voltage. When the switching frequency is much larger than the ac line frequency, then therms valtie cati be well-approximated as a double ititegral. The sqttare of the cttrrent is integrated first 10 find its average over a switching period, and the result is then integrated to fitid the average over the ac line period.

Computation of the rms and average values of the waveforms of a PWM rectifier can be quite tedious, and this can impede the effective design of the power stage components. In this section, several approximations are developed, which allow relatively simple analytical expressions to be written forthe rms and average values of the power stage currents, and which allow comparison of converter approaches [14,41]. The transistor current in the boost rectifier is found to be quite low.

The rms value of the transistor current is defined as

fyMt

(18.107)

where Г . is the period ofthe ac line waveform. The integral can be expressed as a sum of integrals over all ofthe switching periods contained in one ac hne period:

(18.108)

Fig. 18.31 Modulated transistor current waveform, boost rectifier.



where Г, is lhe switching period. The quatitily itiside lhe paretitheses is the value of averaged over the n* switching period. The summation can be approximated by an integral in the case when Г, is much less lhan ..This approximation coiresponds to taking the limit as tends to zero, as follows:

(18.10?)

So j(j(() is first averaged over one switching period. The result is then averaged over the ac line period, and the square root is taken of lhe result.

18.5.1 Boost Rectifier Exuimple

For the boost reciifier, the transistor current (y(f) is equal to the input current when the transistor conducts, and is zero when the transistor is off. Therefore, the average of jy(f) over one switching period is

(18.(10)

If the input voltage is given by

then the input current will be

= sin (o(

(18.111)

(18.112)

where is the emulated resistance. With a constant output voltage V, the iransistor duly cycle must obey lhe relationship

V I vj.t) 1 - d(t)

(18.113)

This assumes that the converter dynamics are fast compared to the ac line frequency. Stibstituiion of Eq. (18.111) inio(i8.ii3) and soluiion for f/(f) yields

rf(/)=l--sinu)( (ISllt)

Substitution of Eqs. ([8.112) and (18. [ (4) into Ее]. ([8.110) yields the following expression



One can now plug this expression into Eq. (1S.109):

KJn (Ш(>

(18.115)


(18.116)

:--Jsinw/t

sin(mf)rf

wllich tan be furlher simplilied to


(18.117)

sin(fflr)-sin:a r)

This involves integration of powers of sin(tO/) over a complete Table 18,2 .Solution ofthe integral of half-cycle. Ttie integral tan be evaluated with the help of the lot- Eq. (18.118). for seveial values ofrj lowini; formula:

2 24-6-( -l) ...

1-3-5...(h-1) , . 24-6---Г!

(18.118)

This type of integral commonly arises in rras calculations involving PWIVI rectifiers. The values ofthe integral for several choices of л are listed in Table 18.2. Evaluation oflhe integral in Eq. (18.117) using Eq. (18.118) leads to the following result:

/ -i JZlM.\i ./TT-S-b (1Й.119)

It can be seen thai Ihe rras transistor current is minimized by choosing the output voltage V to be as small as possible. The best that can be done is to choose K= which leads to

Larger values of V lead to a larger rms Iransistor current.

A similar analysis for the ims diode current leads to the following expression

£sin-(e)rfe

f> .i - in.- rar.i V Зл V

The choice V =Vf maximizes the rras diode current, with the result

(18.120)

(18,121)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 [ 225 ] 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300