Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 [ 228 ] 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Now subsiituie v/0= Vv integrate lo find ),:

sill (tOfl

(8.133}

Again, 7]. = 27ttoii the at iine period. Equation (i8.133) tan be rewritten as

(iS,n4)

where

(18.135)

By waveform symmetry, we need only integrate from 0 to T,J4. Also, make the substitution 9 = Cdf;

sin=(0}

1 -Л51п{0]

(18.136)

Evaluation of this integral is tedious. It arises in not only the boosl rectifier, but in a number of other high-quality rectifier lopologies as well. The derivation is nol given here, but involves the subslitulion z =1ап(в/2), performing a partial fraction expansion of the resulting rational function of:, and integra-lion of lhe results. The solution is:

--Ц-(/о = я ) = 4-

-2a-n +

4 sin

(и)-I-2cos-1 [ti]

(18.137}

This equation is somewhat complicated, but it is in clo.sed form, and can easily be evaluated by computer spreadsheei. The quantity a, which is a measure of lhe loss resistance R relative to the emulated resistance R, is typically much smaller than 1. F{a) is plolied in Fig. 18.36, The function F{a) can be well-approximated as follows:

F{tt)=\ -l-O.SS2ti4 0.78(r

(18,138)

For 1я1 < 0.15, the F(d) predicted by this approximate expression is within 0.1% of the exact value. If the fl term is omiiied, then lhe accuracy drops to ± 2% over lhe same range of я. The reciifier efficiency f) calculaled in the next seclion depends directly on Fia], and hence the accuracy o{Fia] coincides with the accuracy of т].




-0.15 -0.10 -0.05 0.00 0,05 0.10 0,15

Fig. 18.36 Plot of the integral Яя) vs. a.

IS.6.3 Sttlutittn for Converter Effidenty r

Now that we have found the dc load current, we cati calculate the converter efficiency r\. The average inpul power is

The average load power is

Vli..

where

Here, we have stibsiiittied Eq. (18.136) for/. The efficiency is therefore

(18,139)

(18.140)

(18,141)

(18,142)

by stibstiitilion of Eqs. (18.139) and (18.140). If desired, the parabolic approximation for F(a), Eq. (18.138), can be employed. This leads to

(1н.143)

Equations (18.142) and (18.143) siiow how the efficiency varies with MOSFET on resistance l< and




0.95

0.85

Fig. 18.37 Boost reclifiet efficiency, liq, 08,142), accounting for MOSFET on resistance,

with ac peak voltage V. Equadon (18.142) is plotted in Fig. 18.37. It can be seen that high efficiency is obiained when the peak ac line voltage V, is close to the dc outpui vollage V. Efficiencies in the range 9(Ш to 95% can then be obiained, even with MOSFET on-resistances as high as (i.2R. Of course. Fig. 18.37 is optimistic becanse it neglects sources of loss other than the MOSFET conduction loss.

18,6,4 Design Example

Let us utilize Fig. 18.37 to design for a given efficiency. Consider the following specifications:

Output voltage 390 V

Output power 500 W

rms inpul voltage 120 V

Efficiency 95%

Assume that losses other than the MOSFET conduction loss are negligible. The average input power is

The emulated resistance is therefore

< (l20V)i27 4n

Also,

V i20yTV Q435 V 390 V

(18.!44)

(18.145)

(1я.М6)

Еют Fig. 18.37, or by evaluation of the exact equation (18.142), 95% efficiency wnth V,/V = 0.435 occurs with R JR ~ 0.077. So we require a MOSFET having an on-resistance of



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 [ 228 ] 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300