Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 [ 230 ] 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 18.40 Switch waveforms, 3fiac-dc boost rectifier.

Cotuiuciing i*... /0, -i-devices: ;

1-Gj/

{t)),-d,u){m),

The averaged line-to-iine switch voltages are therefore

{v 0))r, = (i3o(0),- (v, (f)), = [,(f) - d,{t)] {vi!))

(18.153)

(1Б.154)

In a similar manner, the average switch currents can be shown to be



(1S.155)

Equations (18.154) and (18.155) lead to Ihe circuit-averaged model of Fig. 18.41.

With sinusoidal PWM, the duty cycles are varied sinusoidally in synchronism with the ac line, as follows:

(/,(() = Oo + i£> , sin (oir-ip)

tliit) = D + i D sin (wf - Ф - 120°)

dil) = t i P sin (cw - <p - 340

(18,156)

where tt) is the ac line frequency. Since each instantaneous duty cycle must lie in the interval [0,1], the dc bias Z>( is required. The factorD is called the modukilion index: forD = 0.5, D , must be less than or equal to one. Other choices of Z) further restrict In general, the modulation index can be defined as equal to the peak-to-peali amplitude of Ihe fundamental component of the duty cycle variation.

If the switching frequency is sufficiently large, then filter inductors i can be small in value, such that they have negligible effect on the low-frequency ac waveforms. The averaged switch voliage (Vj2(r))j, then becomes approximately equal to Ihe ac line-line voltage Vjj,(f):

(v (0), = (,(f)-2(0){*)) = v ,(t)

Substitution of Eqs. (18.150) and (18.156) leads lo

sin(w-<p)-siii(o)f-(f>-120P] {v(())r=l sin (шг)-sin (u)/-120°)

(ia,157)

(18,158)

For small L. the angle <p must tend to zero, and hence Ihe sinusoidal terms in Eq. (18.158) cancel otii. In steady-state, Ihe dc output voltage is {v(f)) = V. Equation (18.158) Ihen becomes

Solution for the dc output voltage V leads to

(18.139)


Load

Fig, 18.41 Averaged model of ihe open-loop Saac-dc boost rectifier.



Fiihe-Widrk Modulated Rectifiers

Equation (18.160) can be written in terms of the peak line-to-litie voltage Vf. ),

/i D , D

(I K.I 60)

(18,161)

With < 1, the dc outpitt voltage V must be greater than or eqtial to 1.15 times the peak line-to-line ac input voltage. Thus, the rectifier has a boost characteristic.

The sinusoidal PWM approach ofEq. (18.156) i.s not the only way to vary the duty cycles to obtain sinusoidal ac voltages and currents. For example, triplen harmonics can be added to the duty cycle expressions of Eq. (18.156). These triplen harmonics cancel out in Eq. (18.154), .such that the average inverter input voltages {viO, {v2jf())j, and (vjj(f)) contain only fundamental. Figure 18.42 illustrates duty cycle variations that lead to a dc output voltage Vequal to V.The effective modulation index in this case is 1.15. The ac-side voltages and curretiLs are again undistorted. Funher increases in the modulation index can be attained only by imroditction of distortion in the ac-side voltages and currents. Of course, in practice the duty cycle modulations are usually generated by the feedback loops that control the input currettt waveforms to attain resistor emttlation.

Three-phase ac-to-dc rectifiers having buck, buck-boost, or other characteristics, are possible, btti find mttch less use thati the boost topology. A 30ac-dc recdfier system can also be cotistrttcted simply using three separate single-phase rectifiers [34]; however, each single-phase rectifier must then contain transformer isolation, leading to substantially increased swiich stress and loss. Other unconventional approaches to three-phase low-harmonic rectification have also been recently explored, such as the Vienna rectifier [56,59], single-switch approaches [49-55], and other circttits[44,45,46,57,58].

Yet another approach to solving the problem of three-phase rectifier harmonics is the harmonic correction scheme illustrated in Fig. 18.43. An acdve six-switch three-phase bridge removes the harmonics generated by a nonlinear three-phase load such as an uncontrolled rectifier. The harmonic corrector is controlled sttch that its ac Une currents contain harmonics that are equal in magnitude but opposite in phase to the harmonics generated by the tionlinear load. No average power flows into the harmonic corrector. The total kVA rating of the harmotiic corrector semicotidttctor devices depends on the magnitttdes of the harmonics produced by the tionlinear load. If the THD generated by the load is not too large, then

Fig, 1Я,42 л muduia-tion strnreey thai leads to a dc outiiut voltage equal lO the peak input line-line voltage.


-0.5 --



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 [ 230 ] 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300