Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 [ 238 ] 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Pig. 19.1(( Uncoiuroiled rectifier witti capacitive filter network, as in tiie series resonant converter.


Reciifier network

Low-pass filter network

pie approximation as usual: v(t) = V, i(t) = /. The diode rectifiers switch when ifit) passes through zero, as shown in Fig. 19.11. The rectifier input voltage V/j(t) is essentially a square wave, equal to + i(r) when ijf(t) is positive and - v(f) when ijW is negative. Note that Vjij(() is in phase with i(().

If the tank output current if.(t) is a sinusoid with peakamplitiide Ij and phase shift ф;

!нС0 = /л1 sin К/-<Рд) then the rectifier input voltage may be expressed in the Fourier series

l (f) = I sill (Al(U/ - ф )

(19.5)

(1У.6)

where фfis the phase shift of ijj(()twith respect to vt)-This voltage waveform is impressed on the output port of the resonant tank network. Again, if the tank network responds primarily to the fundamental component (/,.) ofV/t), and has negligible response at the harmonic frequencies tl/., n = 3, 5, 7..., then the harmonics of vCO can be ignored. The voltage waveform Vg(() is then well approximated by its fundamental component

v,n{t) = s\a(U)j-(fK)=Vg, sill ((о.г-фд)

(19.7)

The fundamental voltage component v,(f) has a peak value of (4/3l) times the dc output voltage V, and is in phase with the current J(0.


fimdammtal


Fig. 19.11 Rectifier network input terminal waveforms; (a) actual waveforms v(0 and r((), (b) fundamental components v(r) and ij (().



Fig. 19.12 An equivalent circuit for the rectifier and filter network, which models the fundametiial components of the rectifier ac iitptJt wavefornns and the dc cornponents of the load waveforms. The rectifier presents an effective resisdve load Д to the tank network.

The rectified tank output current, ip(f) , is filtered by capacitor C. Since no dc current can pass through Cp, the dc component of ((0 must be equal to the steady-state load current /. By equating dc components we obtain:

(19.8)

Therefore, the load current and the tank output current amplitudes are directly related in steady state.

Since Vjff(t), the fundamental component oiVg(t), is in phase with the rectifier presents an effective resistive load R, to the tank circuit. The value of Я, is equal to the ratio of Vg(l) to ifit). Division ofEq. (19.7) by Eq. (19.5), and elimination of/, using Eq. (19.8) yields

i (f) I

With a resistive load R equal to V/I, this equation reduces to

(W.9)

(19.10)

Thus, the tank network is damped by an effective load resistance R equal to 81% of the actual load resistance R. An equivalent circuit that models the rectifier network input port fundamental components and output port dc comptments is given in Fig. 19.12.

19.1.3 Resonant Tank Network

We have postulated that the effects of harmonics can be neglected, and we have consequently shown that the bridge can be modeled as a fundatnental voltage source Vjf). In the case of a dc-dc converter, the rectifier can be mtxleled using an effective resistor of value R. We can now solve the resonant tank network by standard linear analysis.

As shown in Fig. 19.13, the tank circuit is a linear network with the following voltage transfer

function:



Hence, the ratio Vj/V,! of the peak magnitudes of VfliCO and v,[(r) is given by:

In addition, t (i) is given by:

So tlie peak magnitude of i(0 is:

(1Q.12)

mil)

Trail s/er fimction H(s)

i(f>

Resonant network

Fig. 1У.13 The linear tank network, excited by an (iy,l4) effective sinusoidal input source and driving an cffee-five resistive load.

--RT-

Thus, the magnitude of the tank transfer function is found, with an effective resistive load.

19.1.4 Solution of Converter Voltage Conversion Ratio M = V/V

An equivalent circuit of a complete dc-dc resonant converler is depicted in Fig, 19.14. The voltage conversion ratio of the resonant converter can tiow be found:

(19.15)

Simplification by use ofEq. (19.10) yields;

Transferfunction ms)

1 /

-JT sin t />

Resonant network

1(0

Fig. 19.14 Slcady-stiite equivalent circuit that models the dc and fuiidameiilal compuntnts of resonant converter waveforms.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 [ 238 ] 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300