Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 4.13 Ъc switches in the iiivertei of Fig. 4.11 must be capable of conducting both positive and tiiigative curretit, t)ut need block only positive voltage.


Switch off state voltage


Fig. 4.14 The dc-30ae vojtage-.soyi-ce inveitec requires iwo4juadrant .switches, respectively.

Atiother ciirretit-biditecttonal two-quadrant switch example is the bidirectional battery charger/di.scharger illustrated in Fig. 4.i5. This converter can be u.sed, for exatnpie, to interface a battery to the main power bus of a .spacecraft. Both the dt bus voltage v,. and the battery voitage are always positive. The semicotiductor switch elenietits block po.sitive voltage Vy, ,.. When the battery is being charged, i, is positive, and atid Dj altertiately conduct current. When the battery is being discharged, ii is negative, and atid alternately conduct. Although thi.s is a dc~dc converter, it require.s two-quadrant .switches because the power can flow in either direction.

to.

Spacecraft main power bus

Fig. 4.15 Bidirectional btuiery chaiger/discharger, based on the dc-dc buck eonvertec.



Switch on stale current

Fig. 4.16 Voltage-bidirectional two-quadram switch pLopeities.


Switch off stile voluge

Fig. 4.17 A voltage-bidirectional two-cjuad-rant SPST switch: (a) implementation using a transfstor and series diode, (b) Idealized switch characteristics.

(0iO(f0

(tmnsisior

blocks voltage}

blocks voliage)

4.1.3 Vultage-Bidirectiunal Two-Quudrant Switches

Another type of two-t]iiadrant switch, having the voltage-bidirectional properties illustrated in Fig. 4.16, is sometimes required. In applications where the switches must bloclt btrth positive and negative voltages, but conduct only positive current, an SPST switch can be constructed using a series-connected transistor and diode as in Fig. 4.17. When it is intended that the switch be in the off state, the controller turns the transistor off. The diode then blocks negative vt)ltage, and the transistor bitjcks positive voltage. The series connection can block negative voltages up to the dit)de voltage rating, and positive voltages up to the transistor voltage rating. The silicon-controlled rectifier is another example of a voltage-bidirectional two-quadrant switch.

A converter that requires this type of two-quadrant switch is the dc-3fiac buck-boost inverter shown in Fig. 4.18 [4]. If the converter functit)ns in inverter mode, so that the inductt)r current ;,(f) is always positive, then all switches conduct only positive current. But the switches must block the tnitput ac line-to-line voltages, which are sometimes positive and stmetimes negative. Hence voltage-bidirectional two-quadrant switches are required.



Fig. 4.18 Di;-30nt; buck-boost inverter.

4.1.4 Four-Quudrunl Switches

.ДО

The most general type of switch is the four-quadrant switch, Swiich

capable of conducting currents of either polarity and blocking voltages of either polarity, as in Fig. 4.19. There are several ways of constructing a four-quadrant switch. As illustrated in Fig. 4.20(b), two current-bidirectional two-quadrant switches described in Section 4.1.2 can be connected batk-to-back. The transistors are driven on and off simultaneously. Another approach is the antiparallel connection of two voltage-bidirectional two-quadrant switches described in Section 4.1.3, as in Fig. 4.2()(a). A third approach, using only one transistor but additional diodes, is given in Fig. 4.2()(c).

Cycloctjnverters are a class of converters requiring ft) ur-quad rant switches. For example, a 3dac-to-3(iac matrix converter is illustrated in Fig. 4.21. Each t)f the nine SPST F1& l* A four-quadrant switch can con-switches is realized using one of the seiniconductor networks P*У of Fig. 4.20. With proper control of the switches, this con- enber polarity of voltage, verter can produce a three-phase output of variable fre-

on sute

current

ofTsime

.... voltage

Fig. 4.20 Three ways of implementing a four-quadraiit SPST swiich.

(b) 1




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300