Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 [ 240 ] 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

quency is и/, rattier liian

Tiie arguments used to model the tank and rectifier/filter networks are imehanged from Section 19.1. The rectifier presents an effective resistive load to the tank, ofvalue R, = ВЛ/тг In consequence, the converter dc conversion ratio is given by

1 = =

(19.21)

This is a good approximation provided that rtf is close to and that is sufficiently large. Typical characteristics are sketched in Fig. 19.18.

The series resonant converter is not generally designed to operate in a subharmonic mode, since the fundamental modes yield greater output voltage and power, and hence higher efficiency. Nonetheless, the system designer should be aware of their existence, because inadvertent operation in these modes can lead to large signal instabilities.

19.2.3 Parallel Resonant DC-DC Converter Example

The parallel resonant dc~dc converter is diagrammed in Fig. 19.19. It differs from the series resonant converter in two ways. First, the tank capacitor appears in parallel with the rectifier network rather than in series: this causes the tank transfer function His) to have a different form. Second, the rectifier drives an inductive-input low-pass filter. In consequence, the value of the effective resistance R differs from that of the rectifier with acapacitive filter. Nonetheless, sinusoidal approximations can be used to understand the operation of the parallel resonant converter,

As in the series resonant converter, the switch network is controlled to produce a square wave f,(f). If the tank network responds primarily to the fundamental component of i>,(t), then arguments identical to those of Section 19.1 can be used to model the output fundamental components and input dc components of the switch waveforms. The resulting equivalent circuit is identical to Fig. 19.9.

The uncontrolled rectifier with inductive filter network can be described using the dual of the arguments of Section 19.1.2. In the parallel resonant converter, the output rectifiers are driven by the nearly sinusoidal tank capacitor voltage l;(t), and the diode rectifiers switch when (0 passes through zero as in Fig. 19.20. If the filter inductor current ripple is small, then in steady-state the filter inductor current is essentially equal to the dc load current /. The rectifier input current ((t) is therefore a square wave of amplitude /, and is in phase with the tank capacitor voltage Vp(f);


Swildi networii Resonant lanic nerworii Rectifier network Low-pass filter dc

nenvorlc load

Fig. 19.19 Block diagram uf the parallel resnnant converter



fundamental


Fig. 1! .2() Rectilier network input terminal wuveforms, fur the parallel resnnant converter; (a) uctaal waveforms v (/) and r((), (b) fundamental coniponents v,(() and 1/(1).

=1,1,-1,

v/here (p is the phase shift of ICO-

The fundamental component of ig{l) is

i*a(0 = shi (ш.;-ф )

{19.23)

Hence, the rectifier again presents an effective resistive load to the tanlc circuit, etjual to

(19.24)

The ac components of the rectified tanlt capacitor voltage I Vfflj} I are removed by the output low pass filter. In steady state, the output voltage Vis equal to the dc component of v(() :

sill (B,( -фя)

(19.25)

(14,22)

Fiy. 19.21 An ecjuivalent circuit for the rectifier and inductive filter network nf ihe parullel resonant converter, whitb models tbe fundamental components of the rectifier ac Input ftivcforms and the dc components of the load waveforms.

So the k)ad voltage V and the tank capacitor voltage amplitude are directly related in steady state. Substitution ofEq. (19.25) and resistive load characteristics V= [R into Et]. (19.24) yields:

Л = /г= 1.23Э7Я

(19.26)

An equivalem circuit for the uncontrolled rectifier with inductive filter network is given in Fig. 19.21. This model is similar to the one used for the series resonant converter. Fig. 19.12, except that the roles ofthe rectifier input voltage v(/) and current if.it) are ititettbanged, and the effective resistance R has a different value. The model for the complete converter is given in Fig. 19.22.

Solution of Fig. 19.22 yields the converter dc conversion ratio:



Transfer function H(,s)


1 $R

21

-- cos (Ф ) 4V Parallel tank network

Fig, 19,22 Equivalent cliruit for the p ra?lcl resonant converter, which models the fundamental components of the lank wavefonns, and ttie dc components of the converter input current and output voltage.

(19.27)

where His) is the tank transferfunction

m,s)

(19.28)

Z (i).vi

(19.29)

The Bode magnitude diagrams of H(s) and are constructed in Fig. 19.23, using the graphical construction method of Chapter 8. The impedance Zs) is the parallel combination of the impedances of the tank inductor!, capacitor C, and effective load Я.ТЬе magnitude asymptote of the parallel combination of these components, at a given frequency, is equal to the smallest of the individual asymptotes tiiL, 1/юС, and R. Hence, at loW frequency where the inductor impedance dominates the parallel combination, Ij Z(j) II = taZ., while at high frequency the capacitor dominates and Z (j) = 1/tijC, At resonance, the impedances of the inductor and capacitor are equal in tnagnitude but opposite in phase, so that their effects cancel. The impedance Z(i) is then equal to R:

+jis>nC-

(19.30)

with

The dc conversion ratio is therefore



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 [ 240 ] 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300