Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 [ 243 ] 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Transfer function His)

Fig. 19.30 Resonant inverter nnodel.

Effective sinusoidal source

Resonant network

Purely reactive

Effective > resistive

To (Jesign a resonant converter that exhibits gotxi properties, the engineer must (Jevelop physical insight into how the load resistance R affects the tank input impedance and output voltage.

In this section, the inverter output characteristics, zero-voitage switching boundary, and the dependence of transistor current on load resistance, are related to the properties of the tank network under the extreme conditions of an open-circuited or short-circuited load. The undatnped tank network responses are easily plotted, and the insight needed to optimize the tank network design can be gained quickly.

19.4.1 Inverter Output Characteristics

Let us first investigate how the magnitude ofthe inverter output voltage v depends on the load current magnitude /1, Consider the resonant inverter systetn of Fig. 1930, Let Cj) be the open-circuit (R So) tran.sfer function ofthe tank network:

HJs) =

vis)

(19.33)

and let Zis) be the output impedance, determined when the source Vj.,(.v} is short-circuited. Then we can model the output port ofthe tank network using the Thevenin-equivalent circuit of Fig. 19.31. Solution □f this circuit using the voltage divider formula leads to

m = HJs)v,i(s)

PrZJs}

(19.34)

At agiven angular switching frequency = 2л/, the phasor representing the magnitude and phase of the ac output voltage is found by letting j =j<i)j;

vOJ = (jtu,)v 0 ) -

(19.35)

+ 2(7W,) The magnitude tan be found by noting that

v0a),)j = vO4)v*(MJ (-36)

where С/Ш,) is the complex conjugate of v(ju)J. Substitution ofEq. (19.35) into Eq. (19.36) leads to




I1g, 19.31 Thevenln-equtvalcnt circuit that modcts the output port of the tank network.

R + ZJjui,)

= \HjM)f\v,0,)\

R + ZJjm,)

(19.37)

Ttiis result can be further sitnplified with the assumption that the tank network contains only purely reactive elements, i.e., that any losses or other resistive elements within the tank network have negiigibie effect. Then the output impedance Z(j(ii), as well as all other driving-point impedances of the tank network, are purely imaginary quantities. This implies that the complex conjugate Z(J(ii) is given by

Substitution ofEq. (19.38) tntoEq. (19.37) and simplification leads to

(19.38)

v(j-a)J -

г,<,(М)Г

(19.39)

with

(M)

Substitution ofEq. (19.40) into Eq. (19.39) and rearrangement of terms yields I v(M.) + II iOa),))z o04} = I (М)Г У.Ш I

(19,40)

(19.41)

Hence, at a given frequency, the inverter output characteristic, that is, the relationship between Ц vOCJj) I and II JC/I,) II, is elliptical. Equation (19.41) can be further rearranged, into the form



* 1

Fie. 1?32 E)lip(ical oulpul tharacleristics of resonant inverters. A resistive matched bad if al;>o illustrated.

Inverter output characteristic

llvll

where tlie open-circuit voltage V] . and short-circuit current are given by

(19.42)

(19.43)

These inverter output characteristics iue constructed in Fig. 19.32. This characteristic describes how, at a given switching frequency, the ac output voltage magnitude varies as the circuit is loaded. The equilibrium output voltage is given by the intersection of this elliptical characteristic with the load i-i characteristic. For exatnple. Fig. 19.32 also illustrates a superimposed resistive load line having sltipe l/R. in the special case where R-\\ 2(Js) 11-This value of R corresponds to matched load operation, in which the converter output power is maximized. It can be shown that the operating point is then given by

(19.44)

Note that Fig. 19.32 can а1.чо be applied to the output I-v characteristics of resonant dc-dc converters, since the output rectifier then loads the tanlt with an effective resistive load H-

19.4.2 Dependence tif Transistor Current on Load

The transistors must conduct the current appearing at the inpnt pott of the tanlt network, i,(/). This current is determined by the tank network input itnpedance 2-(Уш):



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 [ 243 ] 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300