Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 [ 244 ] 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


Kig. 19.33 Tank network, parallel icsoimnt ooiiratei example: (a) tank eirtiiit, (b) [lode plot Ы input impedance tnagnitude Z for llie limiUiig ciise.4 ff 0 and ff .

(19,45)

As described previously, obtaining good liglit-load efficiency requires tliat II Z,-(/a),} [[ increase as the load resistance R increases. To understand how Zj(juJ,) ]( depends on R, let us sketch ZfjiH) \\ in the extreme cases of an open-circuited {R -* =) andshort-citcuited {R 0) load:

>д.(М)= z,(M)L

z,.(jui.,)=z,(M)

(19.46)

For example, consider the parallel resonant converter ofFigs. 19.19 tt) 19.23. The Bode dia-gratns of the impedatices \\ ZjoCjtiJj and ZJjit)) \\ are constructed in Fig. !9,33. Z,()(j) is found with the load R shorted, and is equal to the inductor impedance sL. Z-Js), found with the load R open-circuited, is given by the seties combination {sL+ \/sC). It can be seen in Fig. 19.33 that the impedance magnitudes Z;[j(;fD,) and II Z; (j(uj) [ intersect at frequency/ . If the switching frequency is chosen such that/, then ZJjO)) \\ > \\ ZOw) , The cotiverter then exhibits the desirable characteristic that the no-load switch current tnagnitude II f,.(/W,) /1 Zj (/u),) i.s stnaller than the switch current under short-circuit conditions, v(J<i}J \\ / \\ Z(J(Oj \\. In fact, the short-circuit switch current is limited by the impedance of the tank inductor, while the open-circuit switch current is determined primarily by the impedance of the tank capacitor.

If the switching frequency is cht)sen such that/,. >/ , then II Z-JJmJ < [ ZiiJiaJ\\. The no-load switch eitrrent is then greater in magnitude than the switch current wheti the load is short-circuited! When the load current is reduced or removed, the transistors will continue to conduct large currents and generate high conduction losses. This causes the efficiency at light load to be poor. It can be concluded that, to obtain good light-load efficiency in the parallel resonant converter, one should choose/, sufficiently less than / . Unfortunately, this requires operation below resonance, leading to reduced output voltage dynamic range and a tendency to lose the zero-voltage switching prtrperty.

A remaining question is how [j Zfjdi) \{ behaves for intermediate values of load between the open-circuit and short-circuit conditions. The answer is given by Theorem 1 below: Z.(yMj j varies monotonically with R. and therefore is bounded by Zjjfjfi),) and ZiJ[j0\} \\ . Hence, the Bode plots of



Series

L C, ШГу-1[-


Pig, 19.34 Series, parallel, and LCC resonant tank networks, and Iheir input iinpetl-ances Z and Zj ,

Parallel L


L C, ЛПЛП-1-


the limiting ea.ses Ц Z.(jCii) {[ and [ Zj(ju)j.) [{ provide a correct qualitative understanding of tlie behavior of ll Zfll for all R. The theorem is valid for lossless tank networks.

Theorem 1; If the tanlt networlt is purely reactive, tlien its input impedance Z. is a monotonic function of tlie load resistance R.

This theorem is proven by use of IVIiddiebrooks Extra Element Theorem (see Appendix C). The tanlt network input impedance Zs) can he expressed as a function ofthe load resistance R and the tank network driving-point impedances, as foiioWS:

Zfs} = Z (s)

Z,J.s)

AM

(19,47)

where Z- and Zf are the resonant network input impedances, with the load short-circuited or open-circuited, respectively, and Zand Z, are the resonant network output impedances, with the source input short-circuited or open-circuited, respectively. These terminal impedances are simple functions ofthe tank elements, and their Bode diagrams are easily constructed. The input impedances ofthe series reso-



iiiiiit, piinillel resonant, and LCC inverters are listed in Fig. 1У.34. Sinee these impedances do not depend on the load, they ate purely reactive, ideally have zero real parts [38], and their complex conjugates are given hy = - Z, - - Z, etc. Again, recall that the tnagnittide of a complex impedance Z(ja>) can he expressed as the square root of Z(jlii)Z(J(ii). Hence, the tnagnitude of Zj(.i) is given hy

1 +

7.Js)

1 +

(19.48)

vt-here Z is the complex conjugate of Zj,

Next, let us differentiate Eq. (19.48) with respect to R:

ll 2R\7 f

1 + -

(19.49)

The derivative has roots at (i) R - 0, (ii) Й = = , and in the special case (иг) where Zf, = Z. . Since the derivative is otherwise nonzero, the resonant network input impedance Z; is a nionotonic ftinction of R, over the range 0 < Л < oo. in special case ( /), Z; is independent of R. Therefore, Theorem 1 is proved.

An example is given in Figs. 19.3f> and 19.35, for the LCC inverter. Figure 19.35 illustrates the impedance asymptotes of the limiting cases Zj,j and Zjj, . Variation of Zj between these limits, forfmite nonzero Л, is illustrated in Fig. 19.36. The open-circuit resonant frequency and the short-circuit resonant frequency/, are given by

(19.50)

where СЦdenotes inverse addition of Cjand C:

C.fC,= 1

(19.51)

For the LCC inverter, the impedance magnitudes Z;y and Z- \\. are equal at frequency/, given by

2k7LCJ2C



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 [ 244 ] 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300