Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 [ 246 ] 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


-90J

ZCS /

\ : 1

A I

Hg. 19.JS ZCS/ZVS boiindaiy. LCC inverter example: (a) variatioit ttf tank network input impedaiKe phase shifl with load resistance, (b) Comparison оГД with matchtddoati impedance [.

Use ofEq. (19.58) to eliminate Z, from Eq. (19.57) leads to



zl< ((9.59)

This is tlie desired result. Thequantity Z is the inverter output impedanee, and Й = eonesponds to operation at matched load with maximum output power. The impedances Z,- and Zj, aie purely imaginary, atid hence Eq. (19.59) has nt) real stilutitm unle.ss Z and Z are [)foppo.site phase. As illustrated in Fig. 19.37, if at a given frequency Z and Zjq are both inductive, then zero-voltage switching occurs for all loads. Zero-current switching occurs for all loads when Z- and Z-j, iire both capacitive. Therefore, Theorem 2 is proved.

Figure 19.38(ii) illustrates the phase response of Z/jm) as R varies from 0 to for the LCC inverter. A typiciil dependence of Л., and the matched-load impedance Z ottm frequency is illustriited in Fig. 19.38(b). Zero-voitiige switching occurs for all loads when / >/ , imd zero-current switching occurs for all loads when /</o. Over the range/ц < f<f , Z;o is inductive while Z.is ciipiicitive; hence, zero-voitage switching occurs for R < Д.;, while zero-current switching occurs for R > /f,-,. At frequency /m crii = ii il hence the ZVS/ZCS boundary is encountered exactiy at matched loiid. It is commonly desired to obtain zero-voitiige switching at matched load, with low circulating currents and gtKxl efficiency at light loiid. It is apparent that this requires operation in the range/g </</ ,. Zero-voitage switching will then be obtained under matched-ioiid and short-circuit conditions, but will be lost at light load. The choice of element values such that Zq -s: Z is iidvantageous in that the range of loads leading to zero-voitage switching is maximized.

19.4.4 Another Example

As a final example, let us consider selection ofthe resonant tank elements to obtain a given output characteristic iU a certain switching frequency, iind lets eviduate the effect of this choice onfi.,;. It is desired to operate a resonant inverter at switching frequency /, = 100 kHz, with an input voltage of = 160 V. The ct)nverter should be capable of producing an open-circuit peak output voitiige 1. = 4(X) V, and should also produce a nominal tiutput [)f 150 Vrms at 25 W. tt is desired to select resonant tank elements thiit accomplish this.

Tbe specificiitions imply that the converter should exhibit an open-circuit transfer function of , , V (400 V)

\Hjj)\ = j\--f=l,96 (19,60)

The required short-circuit current is found by solving Eq. (19.42) tbr l..

vT (19.61)

The specifications also imply that the peak voltage and current at the nominal operating point are



Substitution of Eq. (19.62) itUo Eq. (19.61) yields

[0.236 a1

212 v

= 0.27SA

1400 v

IVIiitclied load therefore oteurs at the operating point

(19,63)

(19.63)

К. = - = 283У и, = ; = 0.27ЛА Z,(M)=y=l 9Q

(19,64)

Let us select the values of the tatik elements in the LCC tatik network illustrated in Fig. 19.39(a). The impedances of the .series and parallel branches can be represented using the reactances X. and illustrated in Fig. 19.39(b), with

(U,C,

The transfer function HJJdiJ is given by the vohage divider formtila The output impedance Zjijtii) is given by the parallel combination

(19.65)

(19.66)

ТППГ

Fig. 19.39 Tnk network of the LCC inverter example; (a) schematic, (b) repre.4etttatioti of series and parallel branches by reactances X. and X,



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 [ 246 ] 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300