Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 [ 247 ] 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Solution of Eqs. (19.66) and (19.67) for and X, leads to

2(ML

(19.63)

1-ffJM)

Henee, the eapacitance C, should be chosen equal to X, = - 1493 Д

w.A- (DjZ (ja)Jj (2t[ 100 кНг)[ 1439 ii] and the reactance ofthe series branch should be chosen according to

---ralP=(--3.)ii=733.

Since Xj. is cotnprised ofthe series combination ofthe inductor L and capacitor C there is a degree of freedom in choosing the values of L and capacitor to realize X,. For example, we could choose C. very large (tending to a short circuit); this effectively would result in a parallel resonant converter with L = = 1.17 tnH. For nonzero C L must be chosen according to

(19.71)

Forexample, the choice C,. ~ C 1.06 nF leads to L = 3.5 mH. Etesigns using different C, will exhibit exactiy the same characteristics at the design frequency; however, the behavior at other switching frequencies will differ.

For the tanlt networlt illustrated in Fig. 19.39, the value of 7Г,; is completely determined by the parameters ofthe output characteristic ellipse; i.e., by the specification of V V, and 1. Note that Z, the tanlt output impedance with the tank input port open-circuited, is equal to . Substitution of expressions for Zjj and Zj(; into Eq. (19.57) leads to the following expression for Л.,-/

/ Z?M) (19,72)

-\/ 1- (j4)

Since Zjjjj and Я are determined by the operating point specifications, then Ri/ is also. Evaluation of Eq. (19.72) for this example leads to - 1466 fi,Therefore, the inverter will operate with zero-voitage switching for R < 1466 il, including at the nominal operating point R = 9(Ю Q. Other topologies of tank networlt, more complex than the circuit illustrated in Fig. 19.39(b), may have additional degrees of freedom that allow Я,.;, to be independently chosen.

The choice = 3C= 3.2 nF leads to L = 1.96 H. The following frequencies are obtained:



\Z4 X, 733 n

278 A tl-S)

which is nearly the same as the result in Eq. (19.75). The somewhat large open-circuit switch current occurs because of the relatively-high specified open-circuit output voltage; lower values of V . would reduce the result in Eq. (19.75).

19.5 EXACT CHARACTERISTICS OF THE SERIES AND PARALLEL RESONANT CONVERTERS

The exact steady-state behavior of resonant converters can be determined via methods such as state-plane analysis. A detailed analysis of resonant dc~dc converters is beyond the scope of this book. However, the exact steady-state characteristics of ideal series [1, 13-20] and parallel [6, 22-25] resonant dc-dc converters (Fig. 19.40) are summarized in this section. Small-signal ac modeling has also been described in the literature; several relevant papers are [27-30].

19.5.1 Series Resonant Converter

At a given switching frequency, the series resotiatit dc-dc converter cati operate in one continuous conduction raode, and possibly in several discontinuous conduction raodes. The tnode index к is defined as the integer that satisfies

T<4 - kh<l

where F = fjffj is the normalized switching frequency. The subharmonic number is defined as

/ = 127 kHz

/ = 100.6 кНг j

/,= 100.0 kHz a = 64 kHz

Regardless of how C, is chosen, the open-tirciut tank input impedance is

= jX + ;if ] = j{733 ii + ( - 1493 Й)] = - j760 ii (19.74)

Therefore, when the load is open-circuited, the transistor peak current has magnitude

When the load is short-circuited, the transistor peak current has magnitude





llg. 19.40 Trunsforrnec-isoliited resoniinl dc-dc converters: (a) series le.sonant converter, (b) paiallel rcsoniint cotiverter.

{19,78)

Values of к and as functions of /, are summarized in Fig, 19.41 (a). The siibharmonic number t, denotes the dominant harmonic that excites the tank resonance. When the converter is heavily loaded, it operates in type к contintious conduction mode. As the load is reduced (i.e., as the load resistance R is increased), the converter enters the type к discontinuous conduction mode. Further reducing the load causes the converter to enter the type(t - 1) DCM, type (jt - 2) DCM..... type 1 DCM. There is no type 0 DCM, and

hence when the converter operates above resonance, only ttie type 0 continuous conduction mode is possible.

In the type к continuous conduction mode, the series resonant converter exhibits elliptical output ch;iracteristic.4, given by

cos

(19.79)

For the transformer-isolated converters of Fig. 19.40, M and / are related to the load voltage Vand load current / according to

V nV.

(19.K0)

Again, Яц is the tank characteristic impedance, referred to the transformer primary side. The quantity у is the angular length of one-half of the switching period:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 [ 247 ] 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300