Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 [ 249 ] 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


Fig, 19.43 Tank inductor uuirent waveform, type it DCM, for tven A.

Fig, 19,44 Steady-state equivalent circuit model for ati even discontinuous conduction mode: an effective gyratoi-. The tjnuverter exhibits current source characteristics.


Tlie tesLiit is shown in Fig. 19.45, and tlie mode boundaries are explicitly diagrammed in Fig. 19.46. It can Ъе seen that, for operation above resonance, the only possible operating mode is the к = 0 CCM, and that the output voltage decreases monotonicaiiy with increasing switching frequency. Reduction in ioiid curretit (t)r incieiLse in load resistance, which decreases Q) causes the output voltage to increase. A number of successful designs that operate aixive resonance and utilize zero-voitage switching have been documented in the literature [7,21].

Operation below resonance is complicated by the presence of subhartnonic and discontinuous conduction tnodes. The к = 1 CCM and i = 2 DCM are well behaved, in that the output voltage increases monotonically with increasing switching frequency. Increase ofthe load current again causes the output voltage to decrease. Successful designs that operate in these mtxies and employ zero-current switching are numerous. However, operation in the higher-order tnodes {k = 2 CCM, t = 4 DCM, etc.) is normally avoided.

Given F and Q, the operating mode can be evahiated directly, using the following algorithm. First, the continuou.s conduction mode к corresponding to operation at frequency f with heavy loading is found:

*=int(1)

where lNT(jc) denotes the integer part of л. Next, the quantity fc, is determined:

(19.90)



1-it

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 O.l 0

e = o.2-

/ /

0.35/

0.75

!.5 2/

Q=2Q-

2 = 0.2

0,35 0.s

0,75 1

1.3 2

C=zo

0.8 1 i.2

Fig. 19.45 Complete eonlroi plane thaiaeteiistics of the series resonant converter, for the range 0.2 <, /£2.

к=IDCM

0.9 0,8 0,7 0.6 0,5 0.4 0.3 0.2 0.1 0

Jt = 3 DCM .

;k i\ Cpk : j

Jt = 4 , DCM

etc. *\

. jtKOCCM-.,

Fig. 19.46 Contihuous anJ discontinuous conduction mode boundaries.




0.4 0,6

Fig. 19.47 Output cltaructeristics, J: = 0 CCM (above resoriance).

t,=INT

The conveiter operates in type к CCM providetJ that:

(19.91)

(19,92)

Otherwise, the converter operates in type DCM. A simple algorithm can therefore be defined, in which the conversion ratio M is computed for a given F and Q. First, Eqs, (19.90) to (19,92) are evaluated, to determine the operating mode. Then, the appropriate equation (19.83), (19.85), or (19.88) is evaluated to find M.

Giitpiit l-V plane characteristics for the к = 0 CCM, plotted using Eq. (19.79), are shown in Fig. 19.47. The constant-frequency curves are elliptical, and all pass through the point M = I, У = 0. For a given switching frequency, the operating point is given by the intersection ofthe elliptical converter output characteristic with the load /-V characteristic.

Output plane chiu-acteristics that combine the к = 1 CCM, к = 1 DCM, and к = 2 DCM are shown in Fig. 19.48. These were plotted using Eqs. (19.79), (19.85), and (19.ss). These curves were plotted with the assumption that the transistors are allowed to conduct no longer than one tank half-cycle during each switching half-period; this eliminates siibharmonic modes and causes the converter to operate in t = 2 ori = 1 DCM whenever/j < 0.5/(,. Jt can be seen that the constant-frequency curves are elliptical in the continuous conduction mode, vertical (voltage source characteristic) in the t = 1 DCM, and horizontal (current source characteristic) in the = 2 DCM.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 [ 249 ] 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300