Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 [ 252 ] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Transactions on Aerospace and Electronic Systems, Vol. 22, No. 6, pp. 757-763, November 1986.

[20] S. Teabert iind R. Erickson, Steady-Siaie Analysis of lhe Duty Cycle Controlled Series Resonant Converter, !EEE Power Electrotiics Specialists Conference, 19Й7 Record, pp. 545-556.

[21] K.D.t. Nco, Analysis of a Series Resonant Cunverter Pulsewidth-Modulated of Current-Controlled for Low Switching Loss, IEEE Power Electronics Specialists Conference, 1987 Record, pp. 527-556, June 19S7.

[22] R. Orugantf and F.C. Lee, State Plane Analysis of the Parallel Resonant Converter, IEEE Power Electronics Specialists Conference, 19ii5 Record, pp. 56-73, June 19S5.

[23] S. JotlNSON, Steady-State Analysis and Design of the Parallel Resonant Converter, M.S. Thesis, University of Colorado, Boulder, 1986.

[24] S. Johnson and R. Ericicson, Steady-State Analysis and Design of the Parallel Resoaaat Converter, IEEE Transactions on Power Electronics. Vol. 3, No. 4, pp. 93-104, Jan. 19S8.

[25] A. BiLT and M. Swamy, Analysis and Design of a High-Frequency Parallel Resonant Converter Operating Above Resonance, IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 4, July 1989, pp. 449-458.

[26] F.S. tsai, P. Materlt, and F.C. Lee, Constant Frequency, Chiraped Mode Resonant Converlers, IEEE Power Electronics Specialists Conference, 1987 Record, pp. 557-566, June 19S7.

[27] V. VoRPERlAN and S. tuK, Small-Signal Analysis of Resonant Converters, IEEE Power Electronics Specialists Conference, 19S3 Record, pp. 269-282, June 1983.

[28] v. vorperiak, High-2 Appniiimation in the Small-Signal Analysis of Resonant Converters, IEEE Pmver Electronics Specialists Conference, 1985 Record, pp. 707-715,

[29] R. King and t. Stuart, Small-Signal Model for the Series Resonant Converter, IEEE Transactions on Aerospace and Electronic Systems. May 1985, Vol. 21, No. 3, pp. 301-319.

[30] A. WiTULSK[, A. Hernandh, and R. Erickson, Small-Signal Equivalent Circuit Modeling of Resonant Converters, IEEE Tran.tactions on Power Electronics. January 1991.

[31] R. Fi.siiER, K. Nno. and M. Klo, A 500 kHz. 250 W Dc-dc Convener with Multiple Outputs Controlled by Phase-Shifted PWM and Magnetic Amplifiers, / rocffdings of High Frequency Power Conversion Conference, pp. 100-110, May 19S8.

[32] L. Mwne, C. WRicnrr, and M. ScuLECiir, A 1 kW, 500 kHz Front-End Converler for a Distributed Power Supply System, IEEE Applied Power Electronics Conference. 1989 Record, pp. 42332.

[33] R. Redl, L. Belogh, and D. Edwards, Optimum ZVS Full-Bridge DC/DC Converter with PWM Phase-Shift Control: Analysis, Design Considerations, and Experimental Results, IEEE Applied Power Electronics Conference, 1994 Record, pp. 159-165,

[34] J, g. Clio, J, A. Sabate, and F. C. Lee. Novel Full Bridge Zero-Voltage-Transilion PWM DC/DC Converler for High Power Applications, IEEE Applied Power Electronics Conference, 1994 Record, pp. 143-149.



[35] О. D. Patterson and D. M. Divan, Pseudo-Resonant Full Bridge DC/DC Converler, IEEE Power Electronics Specialists Conference, WS7 Retord, pp. 424-430.

[36] R. F.iERiNOTON, M. JovANOvic, and F. C. Lee, Analysis of Reactive Power in Resonant Converters, IEEE Power Electronics Specialists Cimference, 1992 Record, pp. 197-205.

[37] R. D. Middlebrook, Null Double Injection and the Extra Element Theorem. JEEE Transactions on Etiuciition. Vol. 32, No. 3. pp. 167-180, August 1989.

[ЗЯ] D. Tltfle. Netivorli Synthesis, New York: John Wiley & Sons, Vol. i, Chapter 6, 1958.

Problems

19.1 Analysis of a half-bridge dc-dc parallel resonani converter, operated above resonance. In Fig, 19,53,

the elements C , L , and C,. are large in value, and have negligible switching ripple. You may assume that all elements are ideal. You may use the sinusoidal approximatron as appropriate.


0 o.sr, T, t

Fig, 19.53 Half-bridge parallel resonant cunverter of Problem 19,1; (a) schematic, (b) switch voltage waveform.

Sketch the waveform of the current;(().

Construe tan equivalent circuit for this converter, similar to Fig. 19.22, which models the fundamental components of the tank waveforms and the dc components ofthe converter input current and oulpul voltage. Clearly label the values and/or give expressions for all elements in your model, as appropriate.

(c) Solve your model to derive an expression for the conversion ratio VIV - MiF, Q, n). At rated (maximum) load, this converter produces /= 20 A at V= 3.3 V.

(d) What is the converter switching frequency /, at rated load?

(e) What is the magnittide ofthe peak transistor current at rated load? At imnimum load, the converter produces /= 2 A at V= 3.3 V.



(f) What is tlie converter switching frequency f at luiiiimum load?

(k) What is the magnitade of the peak transistor current at minimuin load? Compare with your answer from part (e)-what happens to the conductioii loss and efficiency at minimum load?

19.2 A dc-dc resonant converter contains an LCC tank network Hig. I9.1(d)k with an OLitpLit filter contain-

ing a filter inductor as in the parallel resonant dc-dc converter.

(a) Sketch an equivalent circuit model for Ihis converler, based on the approximate sinusoidal analysis method of Section 19.1, Give expressions for all elements in your model.

(b) Solve your mode], to derive an expression for the conversion ratio Л/= V/V. Kxpress Л/ as a function of F-f!f , 2, = RJRa, and n = CJC, where/ is defined as in Eq. (I9.5D) and is

LC,C,

(t) floe .Vf vs. F, for = I and Q, = I , 2, and 5. (d) Plot M vs. F, for л = t).25 and = 1, 2, and 5.

19.3 Dual nf the series resonant convener In the converter illustrated in Fig. 19.54, tf-p ip2, and are large

filter elements, whose switching ripples are small. L and С are tank elements, whose waveforms iil) and Vflt) are nearly sinusoidal.


Fig, 19.54 Dual of the series resonant converter, Problein ]y.,l.

(a) Using the sinusnidal approximatioii inethod, develop equivalent circuit models for the switch network, tank network, and rectifier network.

fb) Sketch a Bode diagram of the parallel LC parallel tank impedance.

(c) Solve your model. Find an analytical solution for the converter voltage conversion ratio M= WVj, as a function of the effective and the normalized switching frequency F = JJff,-Sketch M vs. F.

(d) What can you say about the validity of lhe sinusoidal approximation for this converter*. iVhich



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 [ 252 ] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300