Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 [ 260 ] 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

(20.47)

The switch conversion ratio \l is thus linQlted to a value slightly less than 1.

The averaged waveforms of converters containing half-wave ZCS quasi-resonant switches can now be determined. The results of the analysis of PWM converters operating in the continuous conduction mode can be directly adapted to the related quasi-resonant converters, simply by replacing the duty cycle d with the switch conversion ratio pi. For the buck converter example, the conversion ratio is

(20.48)

This result could also be derived by use of the principle of inductor volt-second balance. The average voltage acToss the filter inductor is (fiV - V). Upon equating this voltage to zero, we obtain Eq. (20.48).

In the buck converter, /j is equal to the load current I, while V, is equal to the converter input voltage V. Hence, thequantity./, is

(20.49)

Zero current switching occurs for

1<Л

{2t).50)

The output voltage can vary over the range

(20.51)

which nearly coincides with the PWM output voltage t;mge 0 < V< V.

A htK)St converter employing a half-wave ZCS quasi-resonant switch is illustrated in Fig. 20.17. The conversion ratio of the boost converter is given by

V 1-Ц

(20.52)

Fig. 2(1,17 Booat converter contairiing a half-w.ivc ZCS quasi-rcsoitant switch.

L hit)

L о

r о

2 +

ViWC V



The half-wave switch ti)nversii)n ratio i is again given by Eqs. (20.44) to (20.46). For the boost coti-vetter, the applied .switch voltage V, is equal to the output voltage V, while the applied switch current is equal to the filter inductor current, orHence, the quantity uf, is

, .lia ko (20.53)

Also, the input current } of the boo.st converter is teiated to the load current / according to

Equations (20.52) to (20.54), in coiijiiactioa with Eqs. (20.44) to (20.46), describe the averaged wave-fornts ofthe half-wave quasi-resotiant ZCS boost cotiverter.

20.2.3 The FuU-Wave ZCS Quasi-Resonant Switch Cell

The full-wave ZCS quasi-resonant switch cell is illustrated in Fig. 20.8(d). It differs from the half-wave cell in that elements D and Gj are connected in antiparailel, to form a current-bidirectional two-quadrant switch. Typical tatik inductor current and tank capacitor vohage waveforms ate illustrated in Fig. 20.18. These waveforms are similar to those ofthe half-wave case, except that the Q]ID\ switch interrupts the tank inductor cutrent i,(t) at it.s second zero-crossing. While ilt) is negative, diode conducts, and transistor 0] can be turned off at zero current.

The analy.sis is nearly the same as for the half-wave са.че, with the exceptioti of subinterval 2. The subinterval 2 angular length fi and final voltage V.j can be shown to be

(yj (lialfwave)

iTt + .sm

1 27t-sin-(yJ (full wave)

(20.55)

Subinierval:

Fig, 20,18 Tank inductor cunent and capacitor voltage wavefcirmji, for the full-wave ZCS quasi-resonant switch cell of Fig, 20,8(d),

Conducting Qi devices: p




Soft Swiicliifsg

Fig. 20.19 Clittracteri.itics of the fuU-wave ZCS quasi-resonaiit switch.

0.S

0.6 -

ZCS boundary


0.4 -

0.2 -

1 -J]) (half wave) 1 - (full wave)

(20.S6)

In eithei са.че, the switch conversion ratio /iis given by Eq. (20.42). Forthe full-wave switch, one obtain.? where Pf(J,) is given by

i J, + 27Г - sin - V,) + 7 (1 -/Т)

In the fnll-wave case, PiU,) is essentially independent of/:

(20.58)

(20.59)

The worst-case deviation of/(У) from 1 occurs as tends to 1, where P(JJ tends to 0.%. So Pj(J,} lies within 4 of unity forO < /, < 1. Hence, for the full-wave case, it is a good approximation to express the switch conversion ratio as

(20.50)

The full-wave quasi-resonant switch therefore exhibits voltage-source output characteristics, controllable



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 [ 260 ] 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300